Home
Class 12
MATHS
यदि y=x^(x^(x^(...^(oo)))), तो सिद्ध कीज...

यदि `y=x^(x^(x^(...^(oo))))`, तो सिद्ध कीजिये कि `x(dy)/(dx)=y^(2)/(1-ylogx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y=x^(x^(x^(x...^(oo)))) , then x(1-ylogx)(dy)/(dx)

If y=x^(x^(x^(x...^(oo)))) , then x(1-ylogx)(dy)/(dx)

If y=x^(x^(x^(. . . . .^(oo)))) , then x(dy)/(dx) equals :

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)])

If y=e^(x^(e ^(x^(...oo)))) ,show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x logy)) .

If y=a^(x^(a^(x^(…oo)))) , show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x log y)) .

If y=(sqrt(x))^sqrt(x)^sqrt(x)^(dot)^(((oo))),s howt h a t(dy)/(dx)=(y^2)/(x(2-ylogx)