Home
Class 12
MATHS
For the matrices A and B, verify that (A...

For the matrices A and B, verify that `(A B)^(prime)=B^(prime)A^(prime)`, where
(i) `A=[[1],[-4],[ 3]]`,`B=[[-1 ,2, 1]]`
(ii) `A=[[0],[ 1],[ 2]]`,`B=[[1, 5, 7]]`

Text Solution

Verified by Experts

Taking L.H.S.
`(AB)'`
Finding AB first
`AB=[[1],[-4],[3]]_(3xx1)[[-1,2,1]]_(1xx3)`
`AB=[[1xx(-1),1xx2,1xx1],[-4xx(-1),-4xx2,-4xx1],[3xx(-1),3xx2,3xx1]]_(3xx3)`
`AB=[[-1,2,1],[4,-8,-4],[-3,6,3]]`
So, `(AB)'=[[-1,4,-3],[2,-8,6],[1,-4,3]]`
Taking R.H.S.
Finding `B',A'`
Given `B=[[-1 ,2, 1]]`
`therefore`
`B'=[[-1 ,2, 1]]'=[[-1],[2],[1]]`
and `A=[[1],[-4],[ 3]]`
`therefore`
`A'=[[1,-4,1]]`
`B'A'=[[-1],[2],[1]]_(3xx1)[[1,-4,1]]_(1xx3)`
`B'A'=[[-1xx1,-1xx(-4),-1xx3],[2xx1,2xx(-4),2xx3],[1xx1,1xx(-4),1xx3]]_(3xx3)`
`B'A'=[[-1,4,-3],[2,-8,6],[1,-4,3]]`= L.H.S
L.H.S= R.H.S
Hence Proved
(ii) Taking L.H.S.
`(AB)'`
Finding AB first
`AB=[[0],[1],[2]]_(3xx1)[[1,5,7]]_(1xx3)`
`AB=[[0xx1,0xx5,0xx7],[1xx1,1xx5,1xx7],[2xx1,2xx5,2xx7]]_(3xx3)`
`AB=[[0,0,0],[1,5,7],[2,10,14]]`
`(AB)'=[[0,1,2],[0,5,10],[0,7,14]]`
Taking R.H.S.
Finding `B',A'`
Given `B=[[1 ,5, 7]]`
`therefore`
`B'=[[1 ,5, 7]]'=[[1],[5],[7]]`
and `A=[[0],[1],[ 2]]`
`therefore`
`A'=[[0,1,2]]`
`B'A'=[[1],[5],[7]]_(3xx1)[[0,1,2]]_(1xx3)`
`B'A'=[[1xx0,1xx1,1xx2],[5xx0,5xx1,5xx2],[7xx0,7xx1,7xx2]]_(3xx3)`
`B'A'=[[0,1,2],[0,5,10],[0,7,14]]`= L.H.S
L.H.S= R.H.S
Hence Proved
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

For the matrices A and B, verify that (AB)'=B'A', where (i) A=[[1],[-4],[3]], B=[[-1,2,1]]

For each of the following pairs of matrices A and B, verify that (AB)'=(B'A'): (i) A=[{:(1,3),(2,4):}]" and "B=[{:(1,4),(2,5):}] (ii) A=[{:(3,-1),(-2,-2):}]" and "B=[{:(1,-3),(2,-1):}] A=[{:(-1),(2),(3):}]" and "B=[-2" "-1" "-4] (iv) A=[{:(-1," "2,-3),(4,-5," "6):}]" and "B=[{:(" "3,-4),(" "2," "1),(-1," "0):}]

If A=[[3],[1],[-2]] , B=[[1,3,-5]] , verify (AB)\'=B\'A\'

If A=[[3,4],[ -1,2],[0, 1]] and B=[[-1, 2, 1],[1,2, 3]] , then verify that (A+B)^(prime)=A^(prime)+B^(prime)

Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(2,3),(1,-4):}] and B=[{:(1,-2),(-1,3):}]

If A=[[1,-2,3],[-4,2,5]] & B=[[1,3],[-1,0],[2,4]] then verify that (AB)'=B'A'

If A=[[1,-2,3],[-4,2,5]] , B=[[1,3],[-1,0],[2,4]] then verify that (AB)'=B'A'

If A= [(3,1),(4,0)] and B=[(4,0),(2,5)] then verify that (AB)^(-1)= B^(-1) A^(-1)

For the matrix A=[[1, 5],[ 6, 7]] , verify that.(i) (A+A^(prime)) is a symmetric matrix(ii) (A-A^(prime)) is a skew symmetric matrix

Find matrices A and B ,if 2A-B=[[6,-6,0],[-4,2,1]] and A-2B=[[3,2,8],[-2,1,-7]]