Home
Class 13
MATHS
int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x)...

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x) is equal to

int e^(tan^-1x)(1+x+x^2) d(cot^-1x) is equal to

int e^(tan^-1x)/(1+x^2)^2dx

int (e^(cot^(-1)x))/(1+x^(2))dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int (e^(tan^(-1)x)dx)/((1+x^(2))^(2))

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

Statement I int 2^(tan^(-1)x)d(cot^(-1)x)=(2^(tan^(-1)x))/(ln 2)+C Statement II (d)/(dx) (a^(x)+C)=a^(x) ln a

Statement I int 2^(tan^(-1)x)d(cot^(-1)x)=(2^(tan^(-1)x))/(ln 2)+C Statement II (d)/(dx) (a^(x)+C)=a^(x) ln a