Home
Class 12
MATHS
tan^-1""sqrt((1+sinx)/(1-sinx))...

`tan^-1""sqrt((1+sinx)/(1-sinx))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x: tan^-1sqrt((1+sinx)/(1-sinx))

Consider y=tan^-1sqrt((1+sinx)/(1-sinx)) . Hence prove that y=pi/4+x/2 .

Consider y=tan^-1sqrt((1+sinx)/(1-sinx)) Find dy/dx .

Find (dy)/(dx) when y=tan^(-1)sqrt((1+sinx)/(sinx)) .

d/dx[sqrt((1+sinx)/(1-sinx))]

If x is acute , then sqrt((1+sinx)/(1-sinx)) is

Tan^(-1)[(sqrt(1+sinx)-sqrt(1-sinx))/(sqrt(1+sinx)+sqrt(1-sinx))]=

Differentiate tan^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} , 0 < x < pi