Home
Class 12
MATHS
[b^(2)+c^(2),a^(2),a^(2)],[b^(2),c^(2)+a...

[b^(2)+c^(2),a^(2),a^(2)],[b^(2),c^(2)+a^(2),b^(2)],[c^(2),c^(2),a^(2)+b^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [{:((b+c)^(2),a^(2), a^(2)),(b^(2) , (c+ a)^(2), b^(2)),(c^(2),c^(2) ,(a + b)^(2)):}| , then det A is

In a Delta ABC,2ac sin((A-B+C)/(2)) is equal to (a)a^(2)+b^(2)-c^(2)(b)c^(2)+a^(2)-b^(2)(c)b^(2)-c^(2)-a^(2)(d)c^(2)-a^(2)-b^(2)

In any ABC ,the value of 2ac sin((A-B+C)/(2)) is (a)a^(2)+b^(2)-c^(2)(b)c^(2)+a^(2)-b^(2)(c)b^(2)-c^(2)-a^(2)(d)c^(2)-a^(2)-b^(2)

If (b^(2) + c^(2) - a^(2))/(2bc), (c^(2) + a^(2) - b^(2))/(2ca), (a^(2) + b^(2) - c^(2))/(2ab) are in A.P. and a+b+c = 0 then prove that a(b+c-a), b(c+a-b), c(a+b-c) are in A.P.

If (b^(2)+c^(2)-a^(2))/(2bc), (c^(2)+a^(2)-b^(2))/(2ca) and (a^(2)+b^(2)-c^(2))/(2ab) are in A.P. then show that, a(b+c-a), b(c+a-c) and c(a+b-c) are also in A.P. [a+b+c != 0] .

Prove that |{:(a^(2), a^(2)-(b-c)^(2), bc), (b^(2), b^(2)-(c-a)^(2), ca), (c^(2), c^(2)-(a-b)^(2), ab):}|= (a^(2)+b^(2)+c^(2))(a-b)(b-c)(c-a)(a+b+c)

If a + b + c = 0 , prove that a^(4) + b^(4) + c^(4) = 2(b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)) = 1//2 (a^(2) + b^(2) + c^(2))^(2)

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3