Home
Class 12
MATHS
If Aprime=[[-2, 3],[ 1, 2]]and B=[[-1, 0...

If `Aprime=[[-2, 3],[ 1, 2]]`and `B=[[-1, 0],[ 1, 2]]`, then find `(A+2B)^(prime)`.

Text Solution

AI Generated Solution

To solve the problem, we need to find \((A + 2B)^{\prime}\) given that \(A^{\prime} = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}\) and \(B = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}\). ### Step 1: Find Matrix A Since we are given \(A^{\prime}\), we can find matrix \(A\) by taking the transpose of \(A^{\prime}\). \[ A = (A^{\prime})^{\prime} = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}^{\prime} = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If A'=[[-2,3],[1,2]] and B=[[-1,0],[1,2]] then find the value of (A+2B)'

If A=[[-2,3],[1,2]] and B=[[-1,0],[1,2]] then find the value of (A+2B)

If A^T=[(-2,3),(1,2)] and B =[(-1,0),(1,2)] ,then find (A +2B)^T .

If A=[[3,4],[ -1,2],[0, 1]] and B=[[-1, 2, 1],[1,2, 3]] , then verify that (A+B)^(prime)=A^(prime)+B^(prime)

If A=[[2,-1,5] , [4,0,3]] and B=[[-2,3,1] , [-1,2,-3]] then find A'+B'

If A=[[1],[2],[3]]" and "B=[[-5,4,0],[0,2,-1],[1,-3,2]] , then find BA

If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]] , then (B^(-1)A^(-1))^(-1)=

If A=[[-1 ,2, 3],[ 5 ,7, 9],[-2 ,1, 1]] and B=[[-4, 1,-5],[ 1, 2,0 ],[1, 3, 1]] , then (A+B)^(prime)=A^(prime)-B^(prime) is true or false

If A^T=[3 4-1 2 0 1] and B=[-1 2 1 1 2 3], then find A^T- B^T

If A=[[-2,1],[5,0],[-1,4]],B=[[-2,3,1],[4,0,2]] then find 2A+B^T