Home
Class 12
MATHS
The value of the lambda so that P, Q, R,...

The value of the` lambda` so that P, Q, R, S on the sides OA, OB, OC and AB of a regular tetrahedron are coplanar. When `(OP)/(OA)=1/3 ;(OQ)/(OB)=1/2` and `(OS)/(AB)=lambda` is (A) `lamda=1/2` (B) `lamda=-1` (C) `lamda=0` (D) `lamda=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the lambda so that P,Q,R, S on the sides OA,OB,OC and AB of a regular tetrahedron are coplanar.When (OP)/(OA)=(1)/(3);(OQ)/(OB)=(1)/(2) and (OS)/(AB)=lambda is(A)lambda=(1)/(2)(B)lambda=-1(C)lambda=0(D)lambda=2

Find the value of lambda so that the points P ,Q ,R and S on the sides O A ,O B ,OC and A B , respectively, of a regular tetrahedron O A B C are coplanar. It is given that (O P)/(O A)=1/3,(O Q)/(O B)=1/2,(O R)/(O C)=1/3 and (O S)/(A B)=lambdadot (A) lambda=1/2 (B) lambda=-1 (C) lambda=0 (D) for no value of lambda

Find the value of lambda so that the points P ,Q ,R and S on the sides O A ,O B ,OC and A B , respectively, of a regular tetrahedron O A B C are coplanar. It is given that (O P)/(O A)=1/3,(O Q)/(O B)=1/2,(O R)/(O C)=1/3 and (O S)/(A B)=lambdadot (A) lambda=1/2 (B) lambda=-1 (C) lambda=0 (D) for no value of lambda

Find the value of lambda so that the points P ,Q ,R and S on the sides O A ,O B ,OC and A B , respectively, of a regular tetrahedron O A B C are coplanar. It is given that (O P)/(O A)=1/3,(O Q)/(O B)=1/2,(O R)/(O C)=1/3 and (O S)/(A B)=lambdadot (A) lambda=1/2 (B) lambda=-1 (C) lambda=0 (D) for no value of lambda

Find the value of lambda so that the points P ,Q ,R and S on the sides O A ,O B ,OC and A B , respectively, of a regular tetrahedron O A B C are coplanar. It is given that (O P)/(O A)=1/3,(O Q)/(O B)=1/2,(O R)/(O C)=1/3 and (O S)/(A B)=lambdadot (A) lambda=1/2 (B) lambda=-1 (C) lambda=0 (D) for no value of lambda

Find the value of lamda so that the points P, Q, R and S on the sides OA, OB, OC and AB, respectively, of a regular tetrahedron OABC are coplanar. It is given that (OP)/(OA) = (1)/(3), (OQ)/(OB) = (1)/(2), (OR)/(OC) = (1)/(3) and (OS)/(AB)= lamda .

Find the value of lamda so that the points P, Q, R and S on the sides OA, OB, OC and AB, respectively, of a regular tetrahedron OABC are coplanar. It is given that (OP)/(OA) = (1)/(3), (OQ)/(OB) = (1)/(2), (OR)/(OC) = (1)/(3) and (OS)/(AB)= lamda .

In figure (OA)/(OC)=(OB)/(OD)=(1)/(2) and AB=5cm. Find the value of DC

If OABC be a regular tetrahedron such that OA^(2)+BC^(2)=OB^(2)+CA^(2)=OC^(2)+AB^(2) then