Home
Class 10
MATHS
If tantheta=a/b , then (asintheta+bcosth...

If `tantheta=a/b` , then `(asintheta+bcostheta)/(asintheta-bcostheta)` is equal to (a) `(a^2+b^2)/(a^2-b^2)` (b) `(a^2-b^2)/(a^2+b^2)` (c) `(a+b)/(a-b)` (d) `(a-b)/(a+b)`

Answer

Step by step text solution for If tantheta=a/b , then (asintheta+bcostheta)/(asintheta-bcostheta) is equal to (a) (a^2+b^2)/(a^2-b^2) (b) (a^2-b^2)/(a^2+b^2) (c) (a+b)/(a-b) (d) (a-b)/(a+b) by MATHS experts to help you in doubts & scoring excellent marks in Class 10 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RD SHARMA|Exercise All Questions|254 Videos

Similar Questions

Explore conceptually related problems

If cottheta=(b)/(a) ,show that (asintheta-bcostheta)/(asintheta+bcostheta)=(a^(2)-b^(2))/(a^(2)+b^(2)) .

If ((asintheta-bcostheta)/(asintheta+bcostheta))=((a^2-b^2)/(a^2+b^2))^k and tan theta=a/b then k=

Knowledge Check

  • If btantheta=a , the value of (asintheta-bcostheta)/(asintheta+bcostheta) (a) (a-b)/(a^2+b^2) (b) (a+b)/(a^2+b^2) (c) (a^2+b^2)/(a^2-b^2) (d) (a^2-b^2)/(a^2+b^2)

    A
    `(a-b)/(a^2+b^2)`
    B
    `(a+b)/(a^2+b^2)`
    C
    `(a^2+b^2)/(a^2-b^2)`
    D
    `(a^2-b^2)/(a^2+b^2)`
  • If asintheta+bcostheta=c , then acostheta-b sintheta is equal to

    A
    `+-sqrt(a+b+c)`
    B
    `+-sqrt(a^(2)+b^(2)+c^(2))`
    C
    `+-sqrt(c^(2)+a^(2)-b^(2))`
    D
    `+-sqrt(c^(2)+a^(2)-b^(2))`
  • If x=acostheta+bsinthetaandy=bcostheta-asintheta ,then x^(2)+y^(2) is equal to

    A
    ab
    B
    `a^(2)+b^(2)`
    C
    `a^(2)-b^(2)`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If acostheta+bsintheta=c , then prove that: asintheta-bcostheta=+-sqrt(a^(2)+b^(2)-c^(2))

    If cosalpha+cosbeta=a, sinalpha+sinbeta=b, then cos(alpha+beta) is equal to (A) (2ab)/(a^2+b^2) (B) (a^2+b^2)/(a^2-b^2) (C) (a^2-b^2)/(a^2+b^2) (D) (b^2-a^2)/(b^2+a^2)

    If acostheta-bsintheta=c , then prove that: asintheta+bcostheta=+-sqrt(a^(2)+b^(2)-c^(2))

    If acostheta+bsintheta=m and asintheta-bcostheta=n , then show that a^(2)+b^(2)=m^(2)+n^(2) .

    If x=acostheta-bsinthetaandy=asintheta+bcostheta , then show that : x^(2)+y^(2)=a^(2)+b^(2)