Home
Class 11
MATHS
2tan^(-1)x=tan^(-1)(2x)/(1-x^(2)),-1<x<1...

2tan^(-1)x=tan^(-1)(2x)/(1-x^(2)),-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If x in (-1,1) prove that 2Tan^(-1)x="Tan"^(-1)(2x)/(1-x^(2))

If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =______.

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Simplify 2"tan"^(-1)x+"sin"^(-1)((2x)/(1+x^(2))) in terms of "tan"^(-1)x .