Home
Class 9
MATHS
The bisectors of exterior angles at B\...

The bisectors of exterior angles at `B\ a n d\ C` of `/_A B C` meet at `Odot` If `/_A=x^0,` then `/_B O C=` `90^0+(x^0)/2` (b) `90^0-(x^0)/2` `180^0+(x^0)/2` (d) `180^0-(x^0)/2`

Text Solution

Verified by Experts

`/_OBC = 180@ - /_B - 1/2 (180°@- /_B)
/_OBC = 90@ - 1/ 2 (/_B )
And, /@OCB = 180@ - /_C - 1 /2 (180@- ∠C)
∠OCB = 90@ - 1/2∠C
In ΔBOC, ∠BOC + ∠OCB + ∠OBC = 180°
∠BOC + 90° -1/2∠C + 90° - 1/2∠B = 180°
∠BOC = 1/2(∠B + ∠C)
∠BOC = 1/2(180° - ∠A)
[From ] ∠BOC = 90° - 1/2(∠A) ∠BOC = 90@ - x/ 2@`
Promotional Banner

Topper's Solved these Questions

  • TABULAR REPRESENTATION OF STATISTICAL DATA

    RD SHARMA|Exercise All Questions|62 Videos

Similar Questions

Explore conceptually related problems

The diagonals A C\ a n d\ B D of a rectangle A B C D intersect each other at Pdot If /_A B D=50^0, then /_D P C= 70^0 (b) 90^0 (c) 80^0 (d) 100^0

Line segments A B a n d C D intersect at O such that A C D Bdot If /_C A B=45^0a n d /_C D B=55^0, then /_B O D= 100^0 (b) 80^0 (c) 90^0 (d) 135^0

In A B C , /_B=/_C and ray A X bisects the exterior angle /_D A CdotIf /_D A X=70^0, t h e n /_A C B= 35^0 (b) 90^0 (c) 70^0 (d) 55^0

The diagonals of a parallelogram A B C D intersect at O . If /_B O C=90^0\ a n d\ /_B D C=50^0, then /_O A B= 40^0 (b) 50^0 (c) 10^0 (d) 90^0

In Figure, A O B is a straight line. If /_A O C+/_B O D=85^0, then /_C O D= (a)85^0 (b) 90^0 (c) 95^0 (d) 100^0

A B C D is a parallelogram in which diagonal A C\ bisects /_B A Ddot If /_B A C=35^0 , then /_A B C= 70^0 (b) 110^0 (c) 90^0 (d) 120^0

In a rhombus A B C D , if /_A C B=40^0, then /_A D B= (a) 70^0 (b) 45^0 (c) 50^0 (d) 60^0

Side B C of a triangle A B C has been produced to a point D such that /_120^0dot If /_B=1/2/_A , then /_A is equal to 80^0 (b) 75^0 (c) 60^0 (d) 90^0

In a quadrilateral A B C D ,\ /_A+/_C is 2 times /_B+/_Ddot If /_A=140^0\ a n d\ /_D=60^0, then /_B= 60^0 (b) 80^0 (c) 120^0 (d) None of these

In A B C , if /_A=100^0, A D bisects /_A a n d /_A D _|_B C . Then, /_= 50^0 (b) 90^0 (c) 40^0 (d) 100^0

RD SHARMA-TRIANGLE AND ITS ANGLES-All Questions
  1. In a A B C , if /A=60^0,\ /B=80^0 and the bisectors of /B\ a n d\ /C ...

    Text Solution

    |

  2. If the bisectors of the acute angles of a right triangle meet at O ...

    Text Solution

    |

  3. Line segments A B\ a n d\ C D intersect at O such that A C || D Bdot I...

    Text Solution

    |

  4. The bisectors of exterior angles at B\ a n d\ C of /A B C meet at Od...

    Text Solution

    |

  5. In a A B C ,\ /A=50^0a n d\ B C is produced to a point Ddot If the bi...

    Text Solution

    |

  6. The side B C of A B C is produced to a point Ddot The bisector of /A ...

    Text Solution

    |

  7. In Figure, if E C || A B ,\ /E C D=70^0A N D\ /B D O=20^0 , then /O B ...

    Text Solution

    |

  8. In Figure, x+y= 270 (b) 230 (c) 210 (d) 190^0

    Text Solution

    |

  9. If the measures of angles of a triangle are in the ratio of 3:4:5, w...

    Text Solution

    |

  10. In Figure, if A B|B C , then x= 18 (b) 22 (c) 25 (d) 32

    Text Solution

    |

  11. In Figure, what is z in terms of \ a n d\ y ? x+y+180 (b) x+y-180 18...

    Text Solution

    |

  12. In Figure, for which value of x is l1 l2 ? 37 (b) 43 (c) 45 (d) 47

    Text Solution

    |

  13. In Figure, what is y in terms of x\ ? 3/2x (b) 4/3x (c) x (d) ...

    Text Solution

    |

  14. In Figure, if l1 l2, the value of x is 22 1/2 (b) 30 (c) 45 (d) 60

    Text Solution

    |

  15. In Figure, what is the value of x ? (a)35 (b) 45 (c) 50 (d) 60

    Text Solution

    |

  16. In r s t ,\ what is the value of x\ ? 40 (b) 90^0 (c) 80^0 (d) ...

    Text Solution

    |

  17. In Figure, the value of x is 65^0 (b) 80^0 (c) 95^0 (d) 120^0

    Text Solution

    |

  18. In Figure, if B P||C Q and A C=B C , then the measure of x is 20^0 (b...

    Text Solution

    |

  19. In Figure, A B\ a n d\ C D are parallel lines and transversal E F in...

    Text Solution

    |

  20. The base B C of triangle A B C is produced both ways and the measure...

    Text Solution

    |