Home
Class 10
MATHS
If x=rsinAcosC ,\ \ y=rsinAsinC and z=rc...

If `x=rsinAcosC ,\ \ y=rsinAsinC` and `z=rcosA` , prove that `r^2=x^2+y^2+z^2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    RD SHARMA|Exercise All Questions|361 Videos
  • TRIGONOMETRIC RATIOS

    RD SHARMA|Exercise All Questions|249 Videos

Similar Questions

Explore conceptually related problems

If x=r sin alpha cos beta, y= r sin alpha sin beta and z= r cos alpha , prove that x^(2)+y^(2) + z^(2) = r^(2).

If x=r sin theta cos varphi,y=r sin theta sin varphi and z=r cos theta, then x^(2)+y^(2)+z^(2)=r^(2)(b)x^(2)+y^(2)-z^(2)=r^(2)(c)x^(2)-y^(2)+z^(2)=r^(2)(d)z^(2)+y^(2)-x^(2)=r^(2)

If x=r cos A cos B, y=rcosAsinB, z=rsin A then x^(2)+y^(2)+z^(2)=

If sin^-1 x+sin^-1 y+sin^-1 z= pi prove that: x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^20

If z = x + iy and |z+6| = |2z+3| , prove that x^2+y^2 =9.

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

a, b, x are in AP, a, b, y are in GP and a, b, z are in HP, then prove that 4z(x-y)(y-z)=y(x-z)^2 .

If x + y + z = xyz , prove that x(1 -y^(2)) (1- z^(2))+ y(1- z^(2))(1- x^(2)) +z(1-x^(2)) (1- y^(2)) = 4xyz .

Using properties of determinants, prove that |[2y,y-z-x,2y],[2z,2z, z-x-y],[ x-y-z, 2x,2x]|=(x+y+z)^3

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .