Home
Class 10
MATHS
Prove: sin^2A+1/(1+tan^2A)=1...

Prove: `sin^2A+1/(1+tan^2A)=1`

Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    RD SHARMA|Exercise All Questions|361 Videos
  • TRIGONOMETRIC RATIOS

    RD SHARMA|Exercise All Questions|249 Videos

Similar Questions

Explore conceptually related problems

Prove that: (tan A)/(1+tan^2A)^2 + (cot A)/(1+cot^2A)^2 = sin A cos A .

Prove that (sin2A)/(1+cos2A)=tan A

Prove that: (1+sin2A)/(1-sin2A)=tan^(2)(pi/4+A)

Prove that : (i) (1)/(1+tan^(2)theta)+(1)/(1+cot^(2)theta)=1 (ii) sin^(2)theta+(1)/(1+tan^(2)theta)=1

Prove: (1+tan^(2)A)+(1+(1)/(tan^(2)A))=(1)/(sin^(2)A-sin^(4)A)

Prove that (1+(1)/(tan^(2)A))(1+(1)/(cot^(2)A))=(1)/((sin^(2)A- sin^(4)A)).

Prove that tan^-1(1/4)+ tan^-1(2/9) = 1/2sin^-1(4/5)

Prove: (sec A-tan A)^(2)=(1-sin A)/(1+sin A)

Prove that (sin^(2)A)/(cos^(2)A)+1=(tan^(2)A)/(sin^(2)A)

Prove that : (i) sin(tan^(-1)1) = 1/(sqrt(2))