Home
Class 12
MATHS
" If "tan^(2)alpha=2tan^(2)beta+1," then...

" If "tan^(2)alpha=2tan^(2)beta+1," then the value of "cos2 alpha+sin^(2)beta+3" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

lf_(tan^(2)alpha)=2tan^(2)beta+1, thenthevalueof cos2 alpha+sin^(2)beta+3

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then the value of cos^(2)beta-sin^(2)beta is

If tan^(2)alpha=2tan^(2)beta+1 , evaluate : cos 2alpha+sin^(2)beta.

If cos^(2)alpha+cos^(2)beta=2 , then the value of tan^(3)alpha+sin^(5)beta is :

If cos^(2)alpha+cos^(2)beta=2 , the value of tan^(3)alpha+sin^(5)beta is.

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then prove thta tan^(2)alpha=cos^(2)beta-sin^(2)beta .

The value of tan^(2)alpha-tan^(2)beta-(1)/(2)sin(alpha-beta)sec^(2)alpha sec^(2)beta is zero if

If cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta .