Home
Class 11
MATHS
If f (x) =x ^(2) + 1/x, x ne 0 then f ((...

If `f (x) =x ^(2) + 1/x, x ne 0` then `f ((1)/(x)) =`

A

`(1)/(x ^(2)) + x`

B

` 1/x + x^(2)`

C

`(1)/(x ^(2)) -x`

D

`1/x -x ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{1}{x}\right) \) given that \( f(x) = x^2 + \frac{1}{x} \) where \( x \neq 0 \). ### Step-by-Step Solution: 1. **Identify the function**: We have the function defined as: \[ f(x) = x^2 + \frac{1}{x} \] 2. **Substitute \( \frac{1}{x} \) into the function**: We need to find \( f\left(\frac{1}{x}\right) \). To do this, we replace \( x \) in the function with \( \frac{1}{x} \): \[ f\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^2 + \frac{1}{\frac{1}{x}} \] 3. **Calculate \( \left(\frac{1}{x}\right)^2 \)**: This simplifies to: \[ \left(\frac{1}{x}\right)^2 = \frac{1}{x^2} \] 4. **Calculate \( \frac{1}{\frac{1}{x}} \)**: This simplifies to: \[ \frac{1}{\frac{1}{x}} = x \] 5. **Combine the results**: Now we can combine both parts: \[ f\left(\frac{1}{x}\right) = \frac{1}{x^2} + x \] 6. **Final expression**: Therefore, the final expression for \( f\left(\frac{1}{x}\right) \) is: \[ f\left(\frac{1}{x}\right) = \frac{1}{x^2} + x \] ### Final Answer: \[ f\left(\frac{1}{x}\right) = \frac{1}{x^2} + x \]
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|83 Videos
  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITVE THINKING|170 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

If f(x)=(1)/(x)-1 where x ne 0, then: ((1)/(x))-(1)/(1+f(x))=

If f(x)=(1)/(x)-1 where x ne 0, then: f(1-x)=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+(1)/(f(x+1))=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)-2.f(2x)=