Home
Class 11
MATHS
If f (x) =x ^(2) -6x + 9, 0 le x le 4, ...

If `f (x) =x ^(2) -6x + 9, 0 le x le 4, ` then `f(3) =`

A

4

B

1

C

0

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(3) \) for the function \( f(x) = x^2 - 6x + 9 \) where \( 0 \leq x \leq 4 \), we can follow these steps: ### Step 1: Identify the function and the value to substitute We have the function: \[ f(x) = x^2 - 6x + 9 \] We need to find \( f(3) \). ### Step 2: Substitute \( x = 3 \) into the function Now, we will substitute \( x \) with \( 3 \): \[ f(3) = 3^2 - 6 \cdot 3 + 9 \] ### Step 3: Calculate \( 3^2 \) Calculating \( 3^2 \): \[ 3^2 = 9 \] ### Step 4: Calculate \( -6 \cdot 3 \) Now, calculate \( -6 \cdot 3 \): \[ -6 \cdot 3 = -18 \] ### Step 5: Combine the results Now we can combine all parts: \[ f(3) = 9 - 18 + 9 \] ### Step 6: Simplify the expression Now simplify: \[ f(3) = 9 - 18 + 9 = 0 \] ### Final Answer Thus, \( f(3) = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|83 Videos
  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITVE THINKING|170 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If f (x) =x ^(2) -6x +5,0 le x le 4 then f (8)=

For the function f(x)=x^(2)-6x+8, 2 le x le 4 , the value of x for which f'(x) vanishes is

Let f(x) = x(2-x), 0 le x le 2 . If the definition of f(x) is extended over the set R-[0,2] by f (x+1)= f(x) , then f is a

If f(x) {: (=(x^(2)-2x-3)/(x-3)" , for " 0 le x le 4 ),(= (x^(2)-1)/(x+2)", for " 4 lt x le 6 " then "):}

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f(x) be defined on [-2,2] and is given by f(x) = {{:(x+1, - 2le x le 0 ),(x - 1, 0 le x le 2):} , then f (|x|) is defined as

If f(x)=6-5x^2 , where -4 le x le 5 , then the range of the function f is given by