Home
Class 11
MATHS
The function {:(f:R to R:f(x) = 1, if ...

The function
`{:(f:R to R:f(x) = 1, if x gt 0),(" "= 0, if x =0),(" "=-1, if x lt0is a):}`

A

rational function

B

modulus function

C

signum function

D

sinx function

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the function defined as follows: 1. **Function Definition**: - \( f(x) = 1 \) if \( x > 0 \) - \( f(x) = 0 \) if \( x = 0 \) - \( f(x) = -1 \) if \( x < 0 \) 2. **Understanding the Function**: - The function takes different values based on the sign of \( x \). - For positive values of \( x \), the function outputs \( 1 \). - For \( x \) equal to \( 0 \), the function outputs \( 0 \). - For negative values of \( x \), the function outputs \( -1 \). 3. **Graphing the Function**: - We can plot the function on a Cartesian plane. - For \( x > 0 \), we draw a horizontal line at \( y = 1 \) (open circle at \( (0, 1) \)). - At \( x = 0 \), we plot a point at \( (0, 0) \). - For \( x < 0 \), we draw a horizontal line at \( y = -1 \) (open circle at \( (0, -1) \)). 4. **Identifying the Function Type**: - The behavior of this function is characteristic of the signum function, often denoted as \( \text{sgn}(x) \). - The signum function is defined as: \[ \text{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases} \] 5. **Conclusion**: - Therefore, the function \( f(x) \) is the signum function. ### Final Answer: The function \( f(x) \) is the signum function, denoted as \( \text{sgn}(x) \). ---
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|83 Videos
  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITVE THINKING|170 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If the function f (x) = {{:(3,x lt 0),(12, x gt 0):} then lim_(x to 0) f (x) =

At x = 0 , f(x) {:(=x-2", if " x lt 0 ),(= 1//2", if " x = 0 ),(=x^(2)", if " x gt 0 ):}} is

If f(x) = {(x-1,",", x lt 0),(1/4,",",x = 0),(x^2,",",x gt 0):}

A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

If F (x) = {{:(-x^(2) + 1, x lt 0),(0,x = 0),(x^(2) + 1,x gt = 0):} , .then lim_(x to 0) f(x) is