Home
Class 11
MATHS
If f (x)=x ^(2) , g (x) =5x -6, then g [...

If `f (x)=x ^(2) , g (x) =5x -6,` then `g [f (x)]=`

A

`26 x ^(2) -60x + 36`

B

`5x ^(2) + 6`

C

`25 x ^(2) + 60x -36`

D

`5x ^(2) -6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( f(x) = x^2 \) and \( g(x) = 5x - 6 \), we need to find \( g[f(x)] \). ### Step-by-Step Solution: 1. **Identify the functions**: - We have \( f(x) = x^2 \). - We have \( g(x) = 5x - 6 \). 2. **Substitute \( f(x) \) into \( g(x) \)**: - We need to find \( g[f(x)] \), which means we will substitute \( f(x) \) into \( g(x) \). - So, we will replace \( x \) in \( g(x) \) with \( f(x) \). 3. **Calculate \( g[f(x)] \)**: - \( g[f(x)] = g[x^2] \). - Now, substitute \( x^2 \) into the function \( g(x) \): \[ g[x^2] = 5(x^2) - 6 \] 4. **Simplify the expression**: - Now, simplify the expression: \[ g[x^2] = 5x^2 - 6 \] 5. **Final Result**: - Therefore, \( g[f(x)] = 5x^2 - 6 \). ### Final Answer: \[ g[f(x)] = 5x^2 - 6 \]
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|83 Videos
  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITVE THINKING|170 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2x+3 and g(x)=9x+6 , then find g[f(x)]-f[g(x)]

If f(x)=5x^(3) and g(x)=3x^(5) , then f(x).g(x) will be

If f(x)=x^(3) and g(x)=x^(2)//5 , then f(x)-g(x) will be

If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f-g)(2) (iii) (f*g)(1)" "(iv) ((f)/(g))(5)

If: f(x)=5-x^2,g(x)=3x-4 , then: (f@g)(-1)=

If f(x)=x^4+3 and g(x)=x+6 , then find (f+g)(2)

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f (x) = (3x + 4)/( 5x -7), g (x) = (7x +4)/(5x -3) then f [g(x)]=