Home
Class 11
MATHS
If f (x) = 3x -1, g (x) =x ^(2) + 1 th...

If ` f (x) = 3x -1, g (x) =x ^(2) + 1 ` then `f [g (x)]=`

A

`3x ^(2) + 2`

B

`9x ^(2) -6x +2`

C

`3x ^(2) -2`

D

`9x ^(2) + 6x-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f[g(x)] \), we need to substitute \( g(x) \) into \( f(x) \). 1. **Identify the functions**: - \( f(x) = 3x - 1 \) - \( g(x) = x^2 + 1 \) 2. **Substitute \( g(x) \) into \( f(x) \)**: - We need to find \( f[g(x)] \), which means we will replace \( x \) in \( f(x) \) with \( g(x) \). - So, we have: \[ f[g(x)] = f(x^2 + 1) \] 3. **Apply the function \( f \)**: - Now, substitute \( x^2 + 1 \) into \( f(x) \): \[ f(x^2 + 1) = 3(x^2 + 1) - 1 \] 4. **Simplify the expression**: - Distributing \( 3 \): \[ = 3x^2 + 3 - 1 \] - Combine like terms: \[ = 3x^2 + 2 \] Thus, the final result is: \[ f[g(x)] = 3x^2 + 2 \]
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|83 Videos
  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITVE THINKING|170 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x) and g(x) are two functions with g (x) = x - 1/x and fog (x) =x^(3) -1/x^(3) then f(x) is

If g(x) = 2x^(2) + 3x - 4 and g (f(x)) = 8x^(2) + 14 x + 1 then f (2) =

If f (x) =(x^(2) -1) " and " g (x) =(2x +3) " then " (g o f) (x) =?

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x)=|x-1| and g(x)=f(f(f(x))) then for x>2,g'(x)=

If f(x)=3x+1 and g(x)=x^(3)+2 then ((f+g)/(f*g))(0) is: