Home
Class 11
MATHS
If f (x) =1 -1/x, then f (f ((1)/(x))) ...

If `f (x) =1 -1/x, ` then `f (f ((1)/(x)))` is

A

`1/x`

B

`(1)/(1+x)`

C

`(x)/(x-1)`

D

`(1)/(x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find \( f(f(1/x)) \) given that \( f(x) = 1 - \frac{1}{x} \). ### Step 1: Find \( f(1/x) \) We start by substituting \( x \) with \( \frac{1}{x} \) in the function \( f(x) \). \[ f\left(\frac{1}{x}\right) = 1 - \frac{1}{\frac{1}{x}} = 1 - x \] ### Step 2: Find \( f(f(1/x)) \) Now we need to find \( f(f(1/x)) \), which means we need to substitute \( f(1/x) \) into the function \( f \). From Step 1, we have \( f(1/x) = 1 - x \). Now we substitute this into \( f \): \[ f(f(1/x)) = f(1 - x) \] ### Step 3: Substitute \( 1 - x \) into \( f(x) \) Now we substitute \( 1 - x \) into the function \( f(x) \): \[ f(1 - x) = 1 - \frac{1}{1 - x} \] ### Step 4: Simplify \( f(1 - x) \) Next, we simplify \( 1 - \frac{1}{1 - x} \): \[ f(1 - x) = 1 - \frac{1}{1 - x} = \frac{(1 - x)(1) - 1}{1 - x} = \frac{1 - x - 1}{1 - x} = \frac{-x}{1 - x} \] ### Step 5: Final Result Thus, we have: \[ f(f(1/x)) = \frac{-x}{1 - x} \] ### Final Answer The final answer is: \[ f(f(1/x)) = \frac{-x}{1 - x} \] ---
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|83 Videos
  • SETS, RELATIONS AND FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITVE THINKING|170 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If f (x) = (x-1)/( x+1) , then f ((1)/( f (x))) equals

f(x)=(1-x)/(1+x) then f{f((1)/(x))}

If f(x)=(1-x)/(1+x) then f{f((1)/(x))}

" 4.If f(x)=(x+1)/(x-1) then f(x)+f((1)/(x)) is

if f(x)=1/(1-x) then find f((x-1)/x)

If f(x)=(1)/(1-x), then f(f(f(x))) is equal to

f (x) is any function and f^(-1)(x) is known as inverse of f (x) , then f^(-1)(x) of f(x)=(1)/(x)+1 is

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1), then show that f((1)/(x))=-f(x) (ii) f(-(1)/(x))=(1)/(f(x))