Home
Class 12
MATHS
In DeltaABC,(cos.(1)/(2)(B-C))/(sin.(1)/...

In `DeltaABC,(cos.(1)/(2)(B-C))/(sin.(1)/(2)A)`=

A

`(b-c)/(a)`

B

`(b+c)/(a)`

C

`(a)/(b-c)`

D

`(a)/(b+c)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given in triangle ABC, we need to evaluate the expression: \[ \frac{\cos\left(\frac{1}{2}(B-C)\right)}{\sin\left(\frac{1}{2}A\right)} \] ### Step 1: Rewrite the Expression We start with the expression: \[ \frac{\cos\left(\frac{1}{2}(B-C)\right)}{\sin\left(\frac{1}{2}A\right)} \] Using the cosine subtraction formula, we can express \(\cos\left(\frac{1}{2}(B-C)\right)\) as: \[ \cos\left(\frac{1}{2}(B-C)\right) = \cos\left(\frac{B}{2}\right)\cos\left(\frac{C}{2}\right) + \sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right) \] ### Step 2: Substitute the Values Now we substitute this back into our expression: \[ \frac{\cos\left(\frac{B}{2}\right)\cos\left(\frac{C}{2}\right) + \sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)}{\sin\left(\frac{1}{2}A\right)} \] ### Step 3: Use the Sine and Cosine Values Next, we can use the sine and cosine values in terms of the sides of the triangle. Recall that: - \(s = \frac{a+b+c}{2}\) (semi-perimeter) - The values of \(\cos\left(\frac{B}{2}\right)\), \(\cos\left(\frac{C}{2}\right)\), \(\sin\left(\frac{B}{2}\right)\), and \(\sin\left(\frac{C}{2}\right)\) can be expressed using the semi-perimeter and the sides of the triangle. ### Step 4: Express in Terms of Sides Using the half-angle formulas: \[ \cos\left(\frac{B}{2}\right) = \sqrt{\frac{s(s-b)}{ac}}, \quad \cos\left(\frac{C}{2}\right) = \sqrt{\frac{s(s-c)}{ab}} \] \[ \sin\left(\frac{B}{2}\right) = \sqrt{\frac{s(s-c)}{ac}}, \quad \sin\left(\frac{C}{2}\right) = \sqrt{\frac{s(s-b)}{ab}} \] ### Step 5: Substitute Back to the Expression Now substituting these values back into our expression, we get: \[ \frac{\sqrt{\frac{s(s-b)}{ac}} \cdot \sqrt{\frac{s(s-c)}{ab}} + \sqrt{\frac{s(s-c)}{ac}} \cdot \sqrt{\frac{s(s-b)}{ab}}}{\sin\left(\frac{1}{2}A\right)} \] ### Step 6: Simplify the Expression We can simplify the expression further by substituting \(\sin\left(\frac{1}{2}A\right)\) in terms of the sides of the triangle: \[ \sin\left(\frac{1}{2}A\right) = \sqrt{\frac{s(s-a)}{bc}} \] ### Final Expression Thus, the final expression becomes: \[ \frac{\text{Numerator}}{\sqrt{\frac{s(s-a)}{bc}}} \] ### Conclusion This gives us the required expression in terms of the sides of triangle ABC. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Competitive Thinking|218 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

In DeltaABC,("cos"^(2)(A)/(2))/(a)+("cos"^(2)(B)/(2))/(b)+("cos"^(2)(C)/(2))/(c) is equal to

In DeltaABC,(a-b)^(2)"cos"^(2)(C)/(2)+(a+b)^(2)"sin"^(2)(C)/(2) is equal to

In DeltaABC,(a-b)^(2)cos^(2).(C)/(2)+(a+b)^(2)sin^(2).(C)/(2) =

In DeltaABC , if "tan"(A)/(2)"tan"(C)/(2)=(1)/(2) , then a ,b and c are in

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

In DeltaABC , (sinA)(sinC) = (sin(A-B))/(sin(B-C)) , prove that a^(2),b^(2),c^(2) are in A.P.

In DeltaABC , prove that: sin(B-C)/(2)=(b-c)/(a).cosA/2

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -Critical Thinking
  1. Which of the following is true in a triangle ABC? (1) (b+c) sin((BC...

    Text Solution

    |

  2. Prove that (1+cos(A-B)cosC)/(1+cos(A-C)cosB)=(a^(2)+b^(2))/(a^(2)+c^(2...

    Text Solution

    |

  3. In DeltaABC,(cos.(1)/(2)(B-C))/(sin.(1)/(2)A)=

    Text Solution

    |

  4. If the sides of a triangle are 6 cm, 10 cm and 14 cm, then what is the...

    Text Solution

    |

  5. If the angles A, B, and C of a triangle ABC are in AP and the sides a,...

    Text Solution

    |

  6. If the angles of a triangle ABC are in A.P., then

    Text Solution

    |

  7. In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c)=

    Text Solution

    |

  8. The ratio of the sides of a triangle ABC is 1: sqrt3: 2. The ratio A: ...

    Text Solution

    |

  9. In DeltaABC,(a-b)^(2)cos^(2).(C)/(2)+(a+b)^(2)sin^(2).(C)/(2)=

    Text Solution

    |

  10. If in triangle ABC, cosA=(sinB)/(2sinC), then the triangle is

    Text Solution

    |

  11. The sides of a triangle are sin alpha, cos alpha and sqrt(1+ sin alpha...

    Text Solution

    |

  12. In DeltaABC,1-tan.(A)/(2)tan.(B)/(2)=

    Text Solution

    |

  13. In DeltaABC,"if "2s=a+b+c, then the value of (s(s-a))/(bc)-((s-b)(s-c)...

    Text Solution

    |

  14. If in a triangle A B C ,acos^2(C/2)ccos^2(A/2)=(3b)/2, then the sides ...

    Text Solution

    |

  15. If in a triangle ABC, (s-a)(s-b)= s(s-c), then angle C is equal to

    Text Solution

    |

  16. In any DeltaABC,("tan"(A)/(2)-"tan"(B)/(2))/("tan"(A)/(2)+"tan"(B)/(2)...

    Text Solution

    |

  17. In !ABC , if sin^(2)A/2,sin^(2)B/2,sin^(2)C/2 be in H.P., then a , b ,...

    Text Solution

    |

  18. If in a triangleABC , a = 6, b=3 and cos(A-B)=4/5 then find its area...

    Text Solution

    |

  19. if the sides of a triangle are in the ratio 2:sqrt6 : sqrt3 + 1, then ...

    Text Solution

    |

  20. In triangle ABC, a=5, b=4 and cos(A+B)=(31)/(32) In this triangle,c=

    Text Solution

    |