Home
Class 12
MATHS
If in triangle ABC, cosA=(sinB)/(2sinC),...

If in triangle ABC, `cosA=(sinB)/(2sinC)`, then the triangle is

A

Equilateral

B

Isosceles

C

Right angled

D

Obtuse triangle

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation in triangle ABC: **Step 1: Write down the given equation.** We have: \[ \cos A = \frac{\sin B}{2 \sin C} \] **Step 2: Cross-multiply to eliminate the fraction.** Multiplying both sides by \(2 \sin C\) gives: \[ 2 \sin C \cos A = \sin B \] **Step 3: Use the angle sum property of triangles.** In triangle ABC, we know that: \[ A + B + C = \pi \] From this, we can express \(B\) in terms of \(A\) and \(C\): \[ B = \pi - A - C \] **Step 4: Substitute \(B\) into the equation.** Now we substitute \(B\) into our equation: \[ 2 \sin C \cos A = \sin(\pi - A - C) \] Using the sine identity \(\sin(\pi - x) = \sin x\), we have: \[ \sin(\pi - A - C) = \sin(A + C) \] **Step 5: Apply the sine addition formula.** Using the sine addition formula \(\sin(A + C) = \sin A \cos C + \cos A \sin C\), we rewrite the equation: \[ 2 \sin C \cos A = \sin A \cos C + \cos A \sin C \] **Step 6: Rearrange the equation.** Rearranging gives: \[ 2 \sin C \cos A - \cos A \sin C - \sin A \cos C = 0 \] This simplifies to: \[ \sin C \cos A - \sin A \cos C = 0 \] **Step 7: Factor the equation.** This can be factored using the sine difference identity: \[ \sin(C - A) = 0 \] **Step 8: Solve for the angles.** The equation \(\sin(C - A) = 0\) implies: \[ C - A = 0 \quad \text{or} \quad C = A \] **Step 9: Conclude the type of triangle.** Since \(C = A\), we have two angles that are equal. Therefore, triangle ABC is an isosceles triangle, where two angles are equal, and consequently, the sides opposite those angles are also equal. **Final Answer:** The triangle is an **isosceles triangle**. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Competitive Thinking|218 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

In triangleABC , if cosA=sinB-cosC , then the triangle is

If in a !ABC , cosA=(sinB)/(2sinC) then the !ABC , is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC, 2cosA=sinBcosecC , then

In DeltaABC , with usual notations, if cosA=(sinB)/(sinC) , then the triangle is

In triangleABC , If cosA+cosB+cosC=(3)/(2) , then the triangle is

If in a triangle ABC, Rr(sinA+sinB+sinC)=96 then the square of the area of the triangle ABC is…….

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -Critical Thinking
  1. The ratio of the sides of a triangle ABC is 1: sqrt3: 2. The ratio A: ...

    Text Solution

    |

  2. In DeltaABC,(a-b)^(2)cos^(2).(C)/(2)+(a+b)^(2)sin^(2).(C)/(2)=

    Text Solution

    |

  3. If in triangle ABC, cosA=(sinB)/(2sinC), then the triangle is

    Text Solution

    |

  4. The sides of a triangle are sin alpha, cos alpha and sqrt(1+ sin alpha...

    Text Solution

    |

  5. In DeltaABC,1-tan.(A)/(2)tan.(B)/(2)=

    Text Solution

    |

  6. In DeltaABC,"if "2s=a+b+c, then the value of (s(s-a))/(bc)-((s-b)(s-c)...

    Text Solution

    |

  7. If in a triangle A B C ,acos^2(C/2)ccos^2(A/2)=(3b)/2, then the sides ...

    Text Solution

    |

  8. If in a triangle ABC, (s-a)(s-b)= s(s-c), then angle C is equal to

    Text Solution

    |

  9. In any DeltaABC,("tan"(A)/(2)-"tan"(B)/(2))/("tan"(A)/(2)+"tan"(B)/(2)...

    Text Solution

    |

  10. In !ABC , if sin^(2)A/2,sin^(2)B/2,sin^(2)C/2 be in H.P., then a , b ,...

    Text Solution

    |

  11. If in a triangleABC , a = 6, b=3 and cos(A-B)=4/5 then find its area...

    Text Solution

    |

  12. if the sides of a triangle are in the ratio 2:sqrt6 : sqrt3 + 1, then ...

    Text Solution

    |

  13. In triangle ABC, a=5, b=4 and cos(A+B)=(31)/(32) In this triangle,c=

    Text Solution

    |

  14. If sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/(2), then

    Text Solution

    |

  15. The value of cot(c o s e c^(- 1)5/3+tan^(- 1)(2/3))i s

    Text Solution

    |

  16. sin^(2)(2tan^(-1)sqrt((1+x)/(1-x)))="","where "-1lexlt1

    Text Solution

    |

  17. The principle value of sin ^(-1)(sin ""(2pi)/(3)) is

    Text Solution

    |

  18. cos (sin^(-1) . 5/13) =

    Text Solution

    |

  19. If theta=sin^(-1)[sin(-600^(@))], then one of the possible values of t...

    Text Solution

    |

  20. सरलतम रूप में लिखे। tan^(-1)((cosx-sinx)/(cosx+sinx))

    Text Solution

    |