Home
Class 12
MATHS
sin^(2)(2tan^(-1)sqrt((1+x)/(1-x)))="","...

`sin^(2)(2tan^(-1)sqrt((1+x)/(1-x)))="____","where "-1lexlt1`

A

`1-x^(2)`

B

`1+x^(2)`

C

`x^(2)-1`

D

`-x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^2(2 \tan^{-1}(\sqrt{\frac{1+x}{1-x}})) \) for \( -1 < x < 1 \), we will follow these steps: ### Step 1: Substitute \( x \) with \( \cos \theta \) Let \( x = \cos \theta \). Then, we have: \[ 1 + x = 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \] \[ 1 - x = 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \] Thus, we can rewrite the expression under the square root: \[ \sqrt{\frac{1+x}{1-x}} = \sqrt{\frac{2 \cos^2\left(\frac{\theta}{2}\right)}{2 \sin^2\left(\frac{\theta}{2}\right)}} = \frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} = \cot\left(\frac{\theta}{2}\right) \] ### Step 2: Apply the tangent inverse function Now substituting back, we have: \[ \tan^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right) = \tan^{-1}\left(\cot\left(\frac{\theta}{2}\right)\right) = \frac{\pi}{2} - \frac{\theta}{2} \] ### Step 3: Calculate \( 2 \tan^{-1} \) Now, we need to calculate: \[ 2 \tan^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right) = 2\left(\frac{\pi}{2} - \frac{\theta}{2}\right) = \pi - \theta \] ### Step 4: Find \( \sin^2(\pi - \theta) \) Using the sine function: \[ \sin(\pi - \theta) = \sin(\theta) \] Thus, \[ \sin^2(2 \tan^{-1}(\sqrt{\frac{1+x}{1-x}})) = \sin^2(\theta) \] ### Step 5: Relate \( \sin^2(\theta) \) to \( x \) Since \( x = \cos \theta \), we can use the Pythagorean identity: \[ \sin^2(\theta) = 1 - \cos^2(\theta) = 1 - x^2 \] ### Final Result Therefore, we conclude that: \[ \sin^2(2 \tan^{-1}(\sqrt{\frac{1+x}{1-x}})) = 1 - x^2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Competitive Thinking|218 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

sin^(2)(2tan^(-1)sqrt((1+x)/(1-x)));|x|<1=

Simplify :sin[2tan^(-1)sqrt((1-x)/(1+x))]

sin^(-1)((1-tan^(2)x)/(1+tan^(2)x))

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))), where '-1

(iv) If y=tan^(-1)(x/(1+sqrt(1-x^(2))))+sin(2tan^(-1)sqrt((1-x)/(1+x))) , then find (dy)/(dx) for x epsilon(-1,1)

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

sin^(-1) (sqrt(x/(x+a))) = tan^(-1) (______).