A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
TRIGONOMETRIC FUNCTIONS
TARGET PUBLICATION|Exercise Competitive Thinking|218 VideosTRIGONOMETRIC FUNCTIONS
TARGET PUBLICATION|Exercise Evaluation Test|34 VideosTRIGONOMETRIC FUNCTIONS
TARGET PUBLICATION|Exercise Evaluation Test|34 VideosTHREE DIMENSIONAL GEOMETRY
TARGET PUBLICATION|Exercise Evaluation Test|9 VideosVECTORS
TARGET PUBLICATION|Exercise Evaluation Test|18 Videos
Similar Questions
Explore conceptually related problems
TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -Critical Thinking
- If (tan^-1x)^2 + (cot^-1x)^2 =(5 pi^2)/8 then x equals :
Text Solution
|
- cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=
Text Solution
|
- cos^-1(4/5)+tan^-1(3/5)=tan^-1(27/11)
Text Solution
|
- If "tan"^(-1)(x-1)/(x-2)+"tan"^(-1)(x+1)/(x+2)=(pi)/4, find x
Text Solution
|
- cot^-1[(cot)^(1/2)]+tan^-1[(cotalpha)^(1/2)=x then sin x= (A) 1 (B) co...
Text Solution
|
- If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove th...
Text Solution
|
- Q. the value of tan^-1(a/(b+c))+tan^-1(b/(c+a)), if /=90^@ in triangle...
Text Solution
|
- सिद्ध कीजिए - tan^(-1).(3)/(4)+tan^(-1).(3)/(5)-tan^(-1).(8)/(19)=(p...
Text Solution
|
- If x^2 + y^2 + z^2 = r^2 and x, y, z > 0, then tan^-1((xy)/(zr))+tan...
Text Solution
|
- If cj >0 for i=1,2, , n , prove that tan^(-1)((c1x-y)/(c1y+x))+tan^(-...
Text Solution
|
- If a1, a2,a3, ,an is an A.P. with common difference d , then prove th...
Text Solution
|
- tan[2tan^(- 1)(1/5)+pi/4]
Text Solution
|
- sin[3sin^(-1)((1)/(5))] is equal to
Text Solution
|
- The value of cot[cos^(-1)(7/25)] is
Text Solution
|
- If cos(2sin^(-1)x)=1/9, then find the values of xdot
Text Solution
|
- Find the value of expression: sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))
Text Solution
|
- If: tan^(-1)x = sin^(-1)(3/sqrt(10)), then: x=
Text Solution
|
- If we consider only the principal values then the value inverse trigon...
Text Solution
|
- sin^(-1)""1/sqrt5+cot^(-1)3=pi/4
Text Solution
|
- If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA, sinB),(-cosA, sinA, cosB)|=...
Text Solution
|