Home
Class 12
MATHS
If a, b, c are the sides of the triangle...

If a, b, c are the sides of the triangle ABC such that `a^(4) +b^(4) +c^(4)=2x^(2) (a^(2)+b^(2)),` then the angle opposite to the side c is-

A

`45^(@)or135^(@)`

B

`30^(@)or100^(@)`

C

`50^(@)or100^(@)`

D

`60^(@)or120^(@)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Critical Thinking|88 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then Triangle ABC is

If, in Delta ABC, a^(4) + b^(4) + c^(4) = 2a^(2)(b^(2) + c^(2)) then : m/_A = ...

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then If sides of DeltaPQR are a, b sec C, c cosec C. Then, area of DeltaPQR is

If a,b,c are the sides of a triangle ABC such that x^(2)-2(a+b+c)x+3 lambda(ab+bc+ca)=0 has real roots.then

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

In an acute triangle ABC if 2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4), then angle

In a triangle ABC,a^(4)+b^(4)+c^(4)=2c^(2)(a^(2)+b^(2)) prove that C=45^(@) or 135^(@)

The sides of triangle ABC satisfy the relations a + b - c= 2 and 2ab -c^(2) =4 , then the square of the area of triangle is ______

If the angles A,B and C of a triangle ABC are in an A.P with a positive common difference such that the smallest angle is one third of the largest angle, and the sides a, b and c are the sides opposite to the angles A ,B and C such that (a)/(sin A)=(b)/(sin B)=(c)/(sin C) then the ratio of the longest side to that of the shortest side will be

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -Competitive Thinking
  1. In a triangle ABC, a= 4, b = 3, angleA= 60°. Then, c is the root of th...

    Text Solution

    |

  2. In triangle ABC,b=sqrt3 c=1 and angleA=30^(@) then the measure of the ...

    Text Solution

    |

  3. If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c...

    Text Solution

    |

  4. In a triangle ABC, if b+c=2aandangleA=60^(@),"then "DeltaABC is

    Text Solution

    |

  5. If in a DeltaABC, sin A: sin C = sin (A - B): sin (B-C), then a^(2),...

    Text Solution

    |

  6. In a triangle ABC If ( 2 cos A)/a + ( cos B)/b + (2 cos C)/c = a/(bc)...

    Text Solution

    |

  7. If 4sinA=4sinB=3sinC" in a "DeltaABC, then cos C =

    Text Solution

    |

  8. Let D be the middle point of the side BC of a triangle ABC. If the tri...

    Text Solution

    |

  9. The angles of a triangle ABC are in an arithmetic progression. The lar...

    Text Solution

    |

  10. In DeltaABC,ifcotA,cotB,cotC be in A.P. then a^(2),b^(2),c^(2) are in

    Text Solution

    |

  11. If in DeltaABC,2b^(2)=a^(2)+c^(2),"then "(sin3B)/(sinB)=

    Text Solution

    |

  12. In a triangle ABC, if b^2 + c^2 = 3a^2, then cotB + cotC-cotA is equal...

    Text Solution

    |

  13. If the sides of the triangle ABC are p,q and sqrt(p^(2)+ pq+q^(2)), th...

    Text Solution

    |

  14. If the line segment joining the points A(a,b) and B(c,d) subtends an a...

    Text Solution

    |

  15. Let ABC be a triangle such that angleACB=pi/6 and let a , b and c deno...

    Text Solution

    |

  16. If two adjacent sides of a cyclic quadrilateral aré 2 and 5 and the an...

    Text Solution

    |

  17. In triangle ABC, if A = 2B, and the sides opposite to the angles A, B,...

    Text Solution

    |

  18. In triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=

    Text Solution

    |

  19. In DeltaABC,cosecA(sinBcosC+cosBsinC)=

    Text Solution

    |

  20. IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

    Text Solution

    |