Home
Class 12
MATHS
If the line segment joining the points A...

If the line segment joining the points A(a,b) and B(c,d) subtends an angle `theta` at the origin, then `costheta` is equal to

A

`(ab+cd)/(sqrt((a^(2)+b^(2))(c^(2)+d^(2))))`

B

`(ac+bd)/(sqrt((a^(2)+b^(2))(c^(2)+d^(2))))`

C

`(ac-bd)/(sqrt((a^(2)+b^(2))(c^(2)+d^(2))))`

D

`(ad+bc)/(sqrt((a^(2)+c^(2))(b^(2)+d^(2))))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\cos \theta\) where \(\theta\) is the angle subtended at the origin by the line segment joining the points \(A(a, b)\) and \(B(c, d)\). ### Step-by-step Solution: 1. **Identify Points and Distances:** - Let \(O\) be the origin \((0, 0)\), \(A(a, b)\), and \(B(c, d)\). - We need to find the lengths of the segments \(OA\), \(OB\), and \(AB\). 2. **Calculate Distances:** - The distance \(OA\) from the origin to point \(A\) is given by: \[ OA = \sqrt{a^2 + b^2} \] - The distance \(OB\) from the origin to point \(B\) is given by: \[ OB = \sqrt{c^2 + d^2} \] - The distance \(AB\) between points \(A\) and \(B\) is given by: \[ AB = \sqrt{(c - a)^2 + (d - b)^2} \] 3. **Use the Cosine Rule:** - According to the cosine rule in triangle \(OAB\): \[ \cos \theta = \frac{OA^2 + OB^2 - AB^2}{2 \cdot OA \cdot OB} \] 4. **Substitute the Values:** - Substitute the distances into the cosine formula: \[ \cos \theta = \frac{(OA^2) + (OB^2) - (AB^2)}{2 \cdot OA \cdot OB} \] - This becomes: \[ \cos \theta = \frac{(a^2 + b^2) + (c^2 + d^2) - ((c - a)^2 + (d - b)^2)}{2 \cdot \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}} \] 5. **Expand and Simplify:** - Expand \((c - a)^2 + (d - b)^2\): \[ (c - a)^2 + (d - b)^2 = (c^2 - 2ac + a^2) + (d^2 - 2bd + b^2) = c^2 + d^2 + a^2 + b^2 - 2ac - 2bd \] - Substitute back into the equation: \[ \cos \theta = \frac{(a^2 + b^2) + (c^2 + d^2) - (c^2 + d^2 + a^2 + b^2 - 2ac - 2bd)}{2 \cdot \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}} \] - Simplifying gives: \[ \cos \theta = \frac{2ac + 2bd}{2 \cdot \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}} \] 6. **Final Result:** - Thus, we arrive at: \[ \cos \theta = \frac{ac + bd}{\sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Critical Thinking|88 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

If the line segment joining the points A(a,b) and B(a, -b) subtends an angle theta at the origin, show that cos theta = (a^2 - b^2)/(a^2 +b^2) .

If the line segment joining the point A(a,b) and B(c,d) subtends an angle theta at the origin.Prove that cos theta=(ac+bd)/(sqrt((a^(2)+b^(2))*(c^(2)+d^(2))))

If the line segment joining the points A(a,b) and B (c, d) subtends a right angle at the origin, show that ac+bd=0

If the segment joining the points (a,b),(c,d) subtends a right angle at the origin,then

If the segments joining the points A(a,b) and B(c,d) subtends an angle theta at the origin,prove that :theta=(ac+bd)/((a^(2)+b^(2))(c^(2)+d^(2)))

The mid - point of the line segment joining the points A(a,0) and B(0,b) is ………. .

If the line segment joining the points A(7, p, 2) and B(q, -2, 5) be parallel to the line segment joining the points C(2, -3, 5) and D(-6, -15, 11), find the value of p and q.

If the point C divides the line segment joining the points A(4, -2, 5) and B(-2, 3, 7) externally in the ratio 8:5, then points C is

Theorem: 7 If the line segment joining two points subtends equal angles at two other points lying on the same side of the line segment; the four points are concyclic.i.e lie on the same circle.

If the point C divides the line segment joining the points A(2, -1, -4) and B(3, -2, 5) externally in the ratio 3:2, then points C is

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -Competitive Thinking
  1. In a triangle ABC, if b^2 + c^2 = 3a^2, then cotB + cotC-cotA is equal...

    Text Solution

    |

  2. If the sides of the triangle ABC are p,q and sqrt(p^(2)+ pq+q^(2)), th...

    Text Solution

    |

  3. If the line segment joining the points A(a,b) and B(c,d) subtends an a...

    Text Solution

    |

  4. Let ABC be a triangle such that angleACB=pi/6 and let a , b and c deno...

    Text Solution

    |

  5. If two adjacent sides of a cyclic quadrilateral aré 2 and 5 and the an...

    Text Solution

    |

  6. In triangle ABC, if A = 2B, and the sides opposite to the angles A, B,...

    Text Solution

    |

  7. In triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=

    Text Solution

    |

  8. In DeltaABC,cosecA(sinBcosC+cosBsinC)=

    Text Solution

    |

  9. IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

    Text Solution

    |

  10. In DeltaABC, with usual notations, if a,b,c are in AP then acos^(2)((C...

    Text Solution

    |

  11. In a DeltaABC, if 2s=a+b+cand(s-b)(s-c)=xsin^(2).(A)/(2), then x =

    Text Solution

    |

  12. In triangle ABC, sin((A)/(2))sin((C)/(2))=sin((B)/(2)) and '2s' is the...

    Text Solution

    |

  13. In triangleABC, if a=18, b=24, c=30, then cos((A)/(2))=

    Text Solution

    |

  14. In DeltaABC,(a-b)^(2)cos^(2).(C)/(2)+(a+b)^(2)sin^(2).(C)/(2)=

    Text Solution

    |

  15. If a, b, c are in A.P then cot(A/2),cot(B/2),cot(C/2) are in

    Text Solution

    |

  16. In DeltaABC,tan.(A)/(2)+tan.(B)/(2)=

    Text Solution

    |

  17. In DeltaABC,(cot.(A)/(2)+cot.(B)/(2))(asin^(2).(B)/(2)+bsin^(2).(A)/(2...

    Text Solution

    |

  18. If the sides of a triangle are in A.P., then the cotangent of its half...

    Text Solution

    |

  19. If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

    Text Solution

    |

  20. The area of an isosceles triangle is 9 cm^(2). If the equal sides are ...

    Text Solution

    |