Home
Class 12
MATHS
sin(cot^(-1)x)=...

`sin(cot^(-1)x)`=

A

`sqrt(1+x^(2))`

B

x

C

`(1+x^(2))^((-3)/(2))`

D

`(1+x^(2))^((-1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin(\cot^{-1} x) \), we can follow these steps: ### Step 1: Let \( \theta = \cot^{-1} x \) This means that \( \cot \theta = x \). ### Step 2: Use the definition of cotangent From the definition of cotangent, we know that: \[ \cot \theta = \frac{\text{adjacent}}{\text{opposite}} = \frac{x}{1} \] This means we can represent the sides of a right triangle where the adjacent side is \( x \) and the opposite side is \( 1 \). ### Step 3: Find the hypotenuse Using the Pythagorean theorem, we can find the hypotenuse \( h \): \[ h = \sqrt{(\text{adjacent})^2 + (\text{opposite})^2} = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] ### Step 4: Calculate \( \sin \theta \) Now, we can find \( \sin \theta \) using the definition of sine: \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 5: Substitute back to find \( \sin(\cot^{-1} x) \) Since we defined \( \theta = \cot^{-1} x \), we have: \[ \sin(\cot^{-1} x) = \sin \theta = \frac{1}{\sqrt{x^2 + 1}} \] ### Final Result Thus, the solution to the problem is: \[ \sin(\cot^{-1} x) = \frac{1}{\sqrt{x^2 + 1}} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Critical Thinking|88 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

The value of sin(cot^-1x)= (A) sqrt(1+x^2) (B) x (C) (1+x^2)^(-3/2) (D) (1+x^2)^(-1/2)

If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

The value of x for which "sin"(cot^(-1)(1+x))="cos"(tan^(-1)x) is 1/2 (b) 1 (c) 0 (d) -1/2

The value of x for which sin(cot^(-1)(1+x))=cos(tan^(-1)x) is (a) (1)/(2) (b) 1(c)0(d)-(1)/(2)

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -Competitive Thinking
  1. If cos^(-1) sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1) sqrt(1-q)=(3pi)/(4), t...

    Text Solution

    |

  2. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  3. sin(cot^(-1)x)=

    Text Solution

    |

  4. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  5. Let cos(2 tan^(-1) x)=1/2 then the value of x is

    Text Solution

    |

  6. If cos(cot^(-1)((1)/(2)))=cot(cos^(-1)x), then a value of x is

    Text Solution

    |

  7. If x gt 0, then the value of sin[cot^(-1)cos(tan^(-1)x)] is equal to -

    Text Solution

    |

  8. For the equation cos^(-1)x+cos^(-1)2x+pi=0 , the number of real soluti...

    Text Solution

    |

  9. cos^(-1) ""(cos"" (7pi )/(6))

    Text Solution

    |

  10. The value of sin^(-1)(cos.(53pi)/(5)) is

    Text Solution

    |

  11. tan^(-1) (cot x) +cot^(-1)(tan x) =pi -2x

    Text Solution

    |

  12. tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=

    Text Solution

    |

  13. If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x...

    Text Solution

    |

  14. If 0lexle1 then sin{tan^(-1)(1-x^(2))/(2x)+cos^(-1)(1-x^(2))/(1+x^(-...

    Text Solution

    |

  15. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  16. cot^(-1)((sqrt(1+x^(2))-1)/(x))=

    Text Solution

    |

  17. tan^(-1)""(1-x)/(1+x)=(1)/(2)tan^(-1)x,(xgt0)

    Text Solution

    |

  18. Given , 0lexle(1)/(2), then the value of tan["sin"^(-1){(x)/(sqrt(2))...

    Text Solution

    |

  19. sec^(-1)[sec(-30^(@))]=

    Text Solution

    |

  20. The value of cos ^(-1)""[cot ((pi)/(2))]+cos^(-1)""[sin ((2pi)/(3))...

    Text Solution

    |