Home
Class 12
MATHS
If cos(cot^(-1)((1)/(2)))=cot(cos^(-1)x)...

If `cos(cot^(-1)((1)/(2)))=cot(cos^(-1)x)`, then a value of x is

A

`(1)/(sqrt(6))`

B

`(-1)/(sqrt(2))`

C

`(2)/(sqrt(6))`

D

`(-2)/(sqrt(6))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\cot^{-1}(\frac{1}{2})) = \cot(\cos^{-1}(x)) \), we will follow these steps: ### Step 1: Solve the left-hand side \( \cos(\cot^{-1}(\frac{1}{2})) \) 1. **Construct a right triangle** where the angle \( \theta = \cot^{-1}(\frac{1}{2}) \). - In this triangle, the adjacent side can be \( 1 \) and the opposite side can be \( 2 \) (since \( \cot \theta = \frac{\text{adjacent}}{\text{opposite}} = \frac{1}{2} \)). 2. **Find the hypotenuse** using the Pythagorean theorem: \[ \text{hypotenuse} = \sqrt{(1^2 + 2^2)} = \sqrt{5} \] 3. **Calculate \( \cos \theta \)**: \[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{5}} \] ### Step 2: Solve the right-hand side \( \cot(\cos^{-1}(x)) \) 1. **Construct another right triangle** where the angle \( \phi = \cos^{-1}(x) \). - Here, the adjacent side is \( x \) and the hypotenuse is \( 1 \). 2. **Find the opposite side** using the Pythagorean theorem: \[ \text{opposite} = \sqrt{1 - x^2} \] 3. **Calculate \( \cot \phi \)**: \[ \cot(\phi) = \frac{\text{adjacent}}{\text{opposite}} = \frac{x}{\sqrt{1 - x^2}} \] ### Step 3: Set the two sides equal Now we equate the two expressions we found: \[ \frac{1}{\sqrt{5}} = \frac{x}{\sqrt{1 - x^2}} \] ### Step 4: Cross-multiply and simplify Cross-multiplying gives: \[ 1 \cdot \sqrt{1 - x^2} = x \cdot \sqrt{5} \] Squaring both sides results in: \[ 1 - x^2 = 5x^2 \] ### Step 5: Rearrange the equation Rearranging gives: \[ 1 = 6x^2 \] ### Step 6: Solve for \( x \) Dividing both sides by 6: \[ x^2 = \frac{1}{6} \] Taking the square root gives: \[ x = \pm \frac{1}{\sqrt{6}} \] ### Step 7: Determine the valid value of \( x \) Since \( x \) must be in the range of the cosine function (which is between -1 and 1), we check both values: - \( x = \frac{1}{\sqrt{6}} \) is valid. - \( x = -\frac{1}{\sqrt{6}} \) is not valid because it would make the cotangent negative, which does not match the positive value we found on the left side. Thus, the final value of \( x \) is: \[ \boxed{\frac{1}{\sqrt{6}}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Critical Thinking|88 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

cos(tan^(-1)backslash(1)/(5)+cot^(-1)x)=0 then find the value of x

If A=e^(cos(cos^(-1)(x^(2))+tan (cot^(-1)(x^(2)) then find the minimum value of A

If cot^(-1)((4)/(3))=x then find the value of cos2x

If cot^(-1)((4)/(3))=x then find the value of cos2x

If [ x cos ( cot^(-1) x ) + sin ( cot^(-1) x) ]^(2) = (51)/(50) then the positive value of x is

If A=sin[cot^(-1){cos(tan^(-1)x)}], then

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -Competitive Thinking
  1. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  2. Let cos(2 tan^(-1) x)=1/2 then the value of x is

    Text Solution

    |

  3. If cos(cot^(-1)((1)/(2)))=cot(cos^(-1)x), then a value of x is

    Text Solution

    |

  4. If x gt 0, then the value of sin[cot^(-1)cos(tan^(-1)x)] is equal to -

    Text Solution

    |

  5. For the equation cos^(-1)x+cos^(-1)2x+pi=0 , the number of real soluti...

    Text Solution

    |

  6. cos^(-1) ""(cos"" (7pi )/(6))

    Text Solution

    |

  7. The value of sin^(-1)(cos.(53pi)/(5)) is

    Text Solution

    |

  8. tan^(-1) (cot x) +cot^(-1)(tan x) =pi -2x

    Text Solution

    |

  9. tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=

    Text Solution

    |

  10. If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x...

    Text Solution

    |

  11. If 0lexle1 then sin{tan^(-1)(1-x^(2))/(2x)+cos^(-1)(1-x^(2))/(1+x^(-...

    Text Solution

    |

  12. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  13. cot^(-1)((sqrt(1+x^(2))-1)/(x))=

    Text Solution

    |

  14. tan^(-1)""(1-x)/(1+x)=(1)/(2)tan^(-1)x,(xgt0)

    Text Solution

    |

  15. Given , 0lexle(1)/(2), then the value of tan["sin"^(-1){(x)/(sqrt(2))...

    Text Solution

    |

  16. sec^(-1)[sec(-30^(@))]=

    Text Solution

    |

  17. The value of cos ^(-1)""[cot ((pi)/(2))]+cos^(-1)""[sin ((2pi)/(3))...

    Text Solution

    |

  18. (tan^(- 1)(sqrt(3))-sec^(- 1)(-2))/(cosec^(- 1)(-sqrt(2))+cos^(- 1)(-1...

    Text Solution

    |

  19. If sec^-1x=cosec^-1y,then cos^(- 1)(1/x)=cos^(- 1)(1/y)=

    Text Solution

    |

  20. If alpha and beta are roots of the equation x^(2)+5|x|-6=0, then the v...

    Text Solution

    |