Home
Class 12
MATHS
cos[2(tan^(-1).(1)/(5)+tan^(-1)5)] = ....

`cos[2(tan^(-1).(1)/(5)+tan^(-1)5)]` = ________.

A

`(1)/(sqrt(2))`

B

0

C

1

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Critical Thinking|88 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)(15/17)+2 tan^(-1)(1/5)=

sin[cos^(-1)(3/5)+tan^(-1)2]=

tan^(-1)7-tan^(-1)5=tan^(-1)(1/18)

tan^(-1) . 3/5 +tan^(-1) . 1/4 = pi/2

tan[2tan^(-1)((1)/(5))+(pi)/(4)]

Which of the following is/are correct? tan[cos^(-1)(4)/(5)+tan^(-1)(2)/(3)]=(17)/(6)cos[tan^(-1)(1)/(3)+tan^(-1)(1)/(2)]=(1)/(sqrt(2))cos2tan^(-1)((1)/(3))+cos(tan^(-1)2sqrt(2))=(14)/(15)cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=-(2sqrt(6))/(6)

tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))=

tan[2.tan^(-1)(1/5)- pi/4]=

The value of tan[ cos^(-1) ((4)/(5)) + tan^(-1) ((2)/(5)) ] will be