Home
Class 12
MATHS
A solution of the equation tan^(-1)(1+...

A solution of the equation
`tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2)` is

A

`x=1`

B

`x=-1`

C

`x=0`

D

`x=pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Critical Thinking|88 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is 2(b)3 (c) 1(d)0

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Solution of tan ^(-1) (1 + x) + tan ^(-1) ( 1- x) = (pi)/(2) is:

An integral solution of the equation tan^(-1)x+tan^(-1)(1//y)=tan^(-1)3 is