Home
Class 12
MATHS
If tan^-1x+tan^-1y+tan^-1z=pi/2,then...

If `tan^-1x+tan^-1y+tan^-1z=pi/2,`then

A

`x+y+z-xyz=0`

B

`x+y+z+xyz=0`

C

`xy+yz+zx+1=0`

D

`xy+yz+zx-1=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Critical Thinking|88 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2) then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), then x+y+z-xyz=0x+y+z+xyz=0xy+yz+zx+1=0xy+yz+zx-1=0

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) and x+y+z=1 then the value of (x^(5)+y^(5)+z^(5)) is equal to (1) Zero (2)-1 (3) 1 (4)2

If tan^(-1)x+tan^(-1)y+tan^(-1) z=(3pi)/(2) then prove that xy+yz+zx=1

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .