Home
Class 12
MATHS
If ((x+1)^(2))/(x^(3)+x)=(A)/(x)+(Bx+C)/...

If `((x+1)^(2))/(x^(3)+x)=(A)/(x)+(Bx+C)/(x^(2)+1)`, then
`cosec^(-1)((1)/(A))+cot^(-1).(1)/(B)+sec^(-1)C` = _________

A

`(pi)/(6)`

B

`(5pi)/(6)`

C

`(pi)/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{(x+1)^2}{x^3+x} = \frac{A}{x} + \frac{Bx+C}{x^2+1}, \] we will follow these steps: ### Step 1: Simplify the Left Side First, simplify the left side of the equation: \[ x^3 + x = x(x^2 + 1). \] Thus, we can rewrite the left-hand side as: \[ \frac{(x+1)^2}{x(x^2+1)}. \] ### Step 2: Rewrite the Right Side Now, we rewrite the right side of the equation with a common denominator: \[ \frac{A}{x} + \frac{Bx+C}{x^2+1} = \frac{A(x^2+1) + (Bx+C)x}{x(x^2+1)}. \] ### Step 3: Combine the Right Side Combine the terms in the numerator of the right side: \[ A(x^2 + 1) + (Bx + C)x = Ax^2 + A + Bx^2 + Cx = (A + B)x^2 + Cx + A. \] ### Step 4: Set the Numerators Equal Now, we have: \[ \frac{(x+1)^2}{x(x^2+1)} = \frac{(A + B)x^2 + Cx + A}{x(x^2+1)}. \] Since the denominators are the same, we can equate the numerators: \[ (x+1)^2 = (A + B)x^2 + Cx + A. \] ### Step 5: Expand the Left Side Expanding the left side gives: \[ x^2 + 2x + 1. \] ### Step 6: Compare Coefficients Now we equate coefficients from both sides: 1. Coefficient of \(x^2\): \(1 = A + B\) 2. Coefficient of \(x\): \(2 = C\) 3. Constant term: \(1 = A\) ### Step 7: Solve the System of Equations From the equations: 1. \(A = 1\) 2. \(C = 2\) 3. Substitute \(A\) into the first equation: \(1 = 1 + B \Rightarrow B = 0\) Thus, we have: - \(A = 1\) - \(B = 0\) - \(C = 2\) ### Step 8: Substitute Values into the Expression Now we substitute \(A\), \(B\), and \(C\) into the expression: \[ \csc^{-1}\left(\frac{1}{A}\right) + \cot^{-1}\left(\frac{1}{B}\right) + \sec^{-1}(C). \] This becomes: \[ \csc^{-1}(1) + \cot^{-1}(\text{undefined}) + \sec^{-1}(2). \] ### Step 9: Evaluate Each Term 1. \(\csc^{-1}(1) = \frac{\pi}{2}\) 2. \(\cot^{-1}(0)\) is undefined. 3. \(\sec^{-1}(2) = \frac{\pi}{3}\). ### Step 10: Combine the Results Since \(\cot^{-1}(0)\) is undefined, we consider the other two terms: \[ \frac{\pi}{2} + \frac{\pi}{3} = \frac{3\pi}{6} + \frac{2\pi}{6} = \frac{5\pi}{6}. \] ### Final Answer Thus, the final answer is: \[ \frac{5\pi}{6}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Critical Thinking|88 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos

Similar Questions

Explore conceptually related problems

If ((x+1)^(2))/(x^(3)+x)=(A)/(x)+(Bx+C)/(x^(2)+1) then sin^(-1)((A)/(C))=

sec^(-1)x + "cosec"^(-1) x ___________

IF (1)/(x(x^(2)+a^(2)))=(A)/(x)+(Bx+C)/(x^(2)+a^(2)) then tan^(-1)((A)/(B))

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)+(Bx+C)/(2x^(2)+3) then A+C-B=

int_(-2)^(3)[cot^(-1)((x-1)/(x+1))+cot^(-1)((x+1)/(x-1))]dx=

int"cosec"^(3)(2x+1)cot(2x+1)dx=?

If cosec^(-1)x=2cot^(-1)7+cos^(-1)((3)/(5)) , then x=

If lim_(x rarr(1)/(2))(ax^(2)+bx+c)/((2x-1)^(2))=(1)/(2) then lim_(x rarr2)((x-a)(x-b)(x-c))/(x-2) is

Evaluate: cos(sec^(-1)x+csc^(-1)x)|x|>=1

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -Competitive Thinking
  1. tan(cos^-1 x) is equal to

    Text Solution

    |

  2. cos(tan^(-1)(3/4)) =

    Text Solution

    |

  3. Find the value of cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    Text Solution

    |

  4. Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3))...

    Text Solution

    |

  5. The value of 2(cot^- 1)1/2-(cot^- 1)4/3 is

    Text Solution

    |

  6. Find the value of tan^-1(1/2tan2A)+tan^-1(cotA)+tan^-1(cot^3A)

    Text Solution

    |

  7. cos^(-1)(15/17)+2 tan^(-1)(1/5)=

    Text Solution

    |

  8. सिद्ध कीजिए कि tan[cos^(-1)""((4)/(5))+tan^(-1)""((2)/(3))]=(17)/(6)

    Text Solution

    |

  9. If cot(cos^(-1)x)=sec{tan^(-1)(a)/sqrt(b^(2)-a^(-2))} then x equals

    Text Solution

    |

  10. Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

    Text Solution

    |

  11. The number of solutions of the equation 2cos(e^x) =5^x +5^(-x), are

    Text Solution

    |

  12. The value of theta lying between theta=0 and theta=pi/2 and satisfyin...

    Text Solution

    |

  13. If ((x+1)^(2))/(x^(3)+x)=(A)/(x)+(Bx+C)/(x^(2)+1), then cosec^(-1)((...

    Text Solution

    |

  14. The number of points of intersection of 2y=1andy=sinx,"in "-2pilexle2p...

    Text Solution

    |

  15. If in a triangle ABC, a=5, b=4 and A=pi/2 +B, then the value of tan ""...

    Text Solution

    |

  16. If x=sin^(-1)K,y=cos^(-1)K,-1leKle1, then the correct relationship is

    Text Solution

    |

  17. If A=1/pi[sin^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)cot^(-1)(pix)] and ...

    Text Solution

    |

  18. If (1)/(6)sintheta,costhetaandtantheta are in geometric progression, t...

    Text Solution

    |

  19. In triangleABC, If A= 30^(@), b=8, a=6 where B = sin^(-1)x, then: x=

    Text Solution

    |

  20. The value of cot[underset(n=1)overset(100)Sigmacot^(-1)(1+underset(k=1...

    Text Solution

    |