Home
Class 12
MATHS
If f(x) = {((1)/(2)(sin x^2),x!=0),(0,x=...

If `f(x) = {((1)/(2)(sin x^2),x!=0),(0,x=0):}`, then

A

`lim_(x to 0) f(x) = 1/2`

B

f(x) is discontinuous at x = 0

C

f(x) is continuous at x = 0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Critical Thinking|80 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Competitive Thinking|63 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {(x sin(1/x)+sin(1/x^2),; x!=0), (0,;x=0):}, then lim_(x rarr oo)f(x) is equal to

Let f:RrarrR be function defined by f(x)={(sin(x^2)/2, ifx!=0),(0,if x=0):} Then, at x=0, f is

If f(x)={((1-cos kx)/(x sin x),x!=0),((1)/(2),x=0)} is continuous at x=0, find k,((1)/(2),x=0)}

if f(x)={((1)/(x))sin x,x!=0,0,x=0}f in d lim_(x rarr0)((1)/(x))sin x

f(x)={((2-Sin(1/x))absx,,xne0),(0,,x=0):}

If f(x)=(sin(x^(2)))/(x),x!=0,f(x)=0,x=0 then at x=0,f(x) is

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then