Home
Class 12
MATHS
If f(x) = {((1+(4x)/5)^(1/x),x!=0),(e^(4...

If `f(x) = {((1+(4x)/5)^(1/x),x!=0),(e^(4/5),x=0):}`, then

A

`lim_(x to 0) f(x) = e^(2/5)`

B

`lim_(x to 0) f(x)` does not exist

C

f(x) is continuous at x = 0

D

f(x) is discontinuous at x = 0

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \[ f(x) = \begin{cases} \left(1 + \frac{4x}{5}\right)^{\frac{1}{x}} & \text{if } x \neq 0 \\ e^{\frac{4}{5}} & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to check the following condition for continuity: \[ \lim_{x \to 0} f(x) = f(0) \] ### Step 1: Calculate \( f(0) \) From the definition of the function, we have: \[ f(0) = e^{\frac{4}{5}} \] ### Step 2: Calculate \( \lim_{x \to 0} f(x) \) For \( x \neq 0 \), we need to evaluate: \[ \lim_{x \to 0} \left(1 + \frac{4x}{5}\right)^{\frac{1}{x}} \] This expression is of the form \( 1^{\infty} \) as \( x \to 0 \). To resolve this, we can use the exponential limit property: \[ \lim_{x \to 0} a^b = e^{\lim_{x \to 0} b \ln(a)} \] where \( a = 1 + \frac{4x}{5} \) and \( b = \frac{1}{x} \). ### Step 3: Rewrite the limit We can rewrite the limit as follows: \[ \lim_{x \to 0} \left(1 + \frac{4x}{5}\right)^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{1}{x} \ln\left(1 + \frac{4x}{5}\right)} \] ### Step 4: Evaluate \( \ln\left(1 + \frac{4x}{5}\right) \) Using the Taylor expansion for \( \ln(1 + u) \) around \( u = 0 \): \[ \ln(1 + u) \approx u \quad \text{for small } u \] we have: \[ \ln\left(1 + \frac{4x}{5}\right) \approx \frac{4x}{5} \] ### Step 5: Substitute back into the limit Now substituting this back into our limit: \[ \lim_{x \to 0} \frac{1}{x} \ln\left(1 + \frac{4x}{5}\right) \approx \lim_{x \to 0} \frac{1}{x} \cdot \frac{4x}{5} = \lim_{x \to 0} \frac{4}{5} = \frac{4}{5} \] ### Step 6: Final limit calculation Thus, we have: \[ \lim_{x \to 0} f(x) = e^{\frac{4}{5}} \] ### Step 7: Compare limits Now we compare the limit with \( f(0) \): \[ \lim_{x \to 0} f(x) = e^{\frac{4}{5}} = f(0) \] ### Conclusion Since \[ \lim_{x \to 0} f(x) = f(0), \] the function \( f(x) \) is continuous at \( x = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Critical Thinking|80 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Competitive Thinking|63 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) {:(=(1+kx)^(1//x)", if "x!= 0 ),(=e^(4)", if " x = 0 ):} is continuous at x = 0 , then k = …..

If f(x)={:{(root(3)((4x+1)/(1-4x))", for " x!=0),(e^(6)", for " x=0):} , then at x=0

If {:(f(x),=((4x+1)/(1-4x))^(1/x),",",x != 0),(,=k, ",",x = 0):} is continuous at x = 0, then k =

If f(x)=(e^(2x)-(1+4x)^(1/2))/(ln(1-x^(2))) for x!=0, then f has

If f(x)=((3)/(5))^(x)+((4)/(5))^(x)-1,x inR, then the equation f(x)=0 has :

If f(x)=((3)/(5))^(x)+((4)/(5))^(x)-1,x in R, then the equation f(x)=0 has :

If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):} , then f is

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then