Home
Class 12
MATHS
If f(x) is continuous at x=0, where f(x)...

If `f(x)` is continuous at `x=0`, where `f(x)=((e^(3x)-1)sin x)/(x^(2))`, for `x!=0`, then `f(0)=`

A

3

B

e

C

3e

D

`e^3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Critical Thinking|80 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Competitive Thinking|63 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)=((e^(2x)-1)tan x)/( x sin x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(e^(x^(2))-cosx)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin (pi cos^(2)x))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continous at x=0, where f(x) ((e^(3x)-1)sin x)/(xlog(1+x)), "for" x ne0, find f(0).

If f(x) is continuous at x=0 , where f(x)=((3^(sin x)-1)^(2))/(x log (1-x)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((4^(sin x)-1)^(2))/(x log (1+2x)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(4^(x)-e^(x))/(6^(x)-1) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((5^(x)-2^(x))x)/(cos 5x-cos 3x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(e^(5x)-e^(2x))/(sin 3x) , for x!=0 then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sqrt(1+x)-root3(1+x))/(x) , for x!=0 , then f(0)=