Home
Class 12
MATHS
If f(x)={:{(x", for " 0 le x lt 1),(2", ...

If `f(x)={:{(x", for " 0 le x lt 1),(2", for " x=1),(x+1", for " 1 lt x le 2):}`, then f is

A

`lim_(x to 1^(-)) f(x) = 0`

B

`lim_(x to 1^(+)) f(x) = 1`

C

f(x) is continuous at` x = 1`

D

f(x) is discontinuous at` x = 1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Critical Thinking|80 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Competitive Thinking|63 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)={:{(ax^(2)-b", for " 0 le x lt1),(2", for " x=1),(x+1", for " 1 lt x le 2):} is continuous at x=1 , then the most suitable values of a, b are

If f(x)={:{(x-1", for " 1 le x lt 2),(2", for " x=2),(2x-3", for " 2 lt x lt 3):} , then f has removable discontinuity at x=2 , if f(2)=

If f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 le x le 10):} , then

If f(x)={:{(-2", for " x le -1),(2x", for " -1 lt x le 1),(2", for " x gt 1):} , then

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

If f(x) is continuous in [-2, 2], where f(x)={:{(x+a", for " x lt 0),(x", for " 0 le x lt 1),(b-x", for " x ge 1):} , then a+b=

If : f(x) {:(=ax^(2)-b", ... " 0 le x lt 1 ),(=2", ... "x=1 ),(= x+1", ... " 1 lt x le 2 ) :} is continuous at x= 1 , then the most suitable values of a and b are

If f(x)={((1)/(x+1)", for " 2 le x le 4),((x+1)/(x-3)", for " 4 lt x le 6):} , then

If f(x)={:{(1-x", for " 0 lt x le 1), ( 1/2 ", for " x=0):} , then in [0, 1]

If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):} , then at x=2