Home
Class 12
MATHS
If f(x)=(x+1)/((x-2)(x-5)), then in [0, ...

If `f(x)=(x+1)/((x-2)(x-5))`, then in [0, 1]

A

continuous

B

discontinuous

C

continuous except at x = 0

D

discontinuous except at x = 0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Critical Thinking|80 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Competitive Thinking|63 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

If 5f(x)+4f((1)/(x))=x-1,x!=0 then write the value of 9f(2)

Statement-If 2f(x)+3f((1)/(x))=(1)/(x)-2,x!=0, then int_(1)^(2)f(x)dx=-(2)/(5)log2+(1)/(2). Statement- -2f(x)=-(2)/(5x)+3(x)/(5)-(2)/(5)

If f(x)=log((1+x)/(1-x)), then (a) f(x_(1))f(x)=f(x_(1)+x_(2))(b)f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^(2)+x)(d)f(x_(1))+f(x_(2))=f((x_(1)+x_(2))/(1+x_(1)x_(2)))

If f(x)=(1+x)(1+x^2)(1+x^3)(1+x^4) , then f'(0)=1

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)-2.f(2x)=

" (1) If "f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0);" then find the value of "f(x)

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2) (0) = 1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R . then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

If f(x) (2^(x)-1)/(1-3^(x)) , x != 0 is continuous at x = 0 then : f(0) =