Home
Class 12
MATHS
If f(x) = (sqrt(x+3)-2)/(x^(3)-1) , x !=...

If `f(x) = (sqrt(x+3)-2)/(x^(3)-1) , x != 1`, is continuous at x = 1, then f(1) is

A

12

B

`1/8`

C

`1/12`

D

`8`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( f(1) \) such that the function \( f(x) = \frac{\sqrt{x+3} - 2}{x^3 - 1} \) is continuous at \( x = 1 \), we need to find the limit of \( f(x) \) as \( x \) approaches 1. ### Step-by-Step Solution: 1. **Identify the limit**: We need to find: \[ \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x^3 - 1} \] 2. **Substituting \( x = 1 \)**: First, let's check what happens when we substitute \( x = 1 \): \[ f(1) = \frac{\sqrt{1+3} - 2}{1^3 - 1} = \frac{\sqrt{4} - 2}{0} = \frac{2 - 2}{0} = \frac{0}{0} \] This is an indeterminate form, so we need to simplify the expression. 3. **Rationalizing the numerator**: To eliminate the indeterminate form, we can rationalize the numerator: \[ \frac{\sqrt{x+3} - 2}{x^3 - 1} \cdot \frac{\sqrt{x+3} + 2}{\sqrt{x+3} + 2} = \frac{(\sqrt{x+3} - 2)(\sqrt{x+3} + 2)}{(x^3 - 1)(\sqrt{x+3} + 2)} \] The numerator simplifies to: \[ (\sqrt{x+3})^2 - 2^2 = x + 3 - 4 = x - 1 \] So we have: \[ \lim_{x \to 1} \frac{x - 1}{(x^3 - 1)(\sqrt{x+3} + 2)} \] 4. **Factoring the denominator**: The denominator \( x^3 - 1 \) can be factored as: \[ x^3 - 1 = (x - 1)(x^2 + x + 1) \] Therefore, we can rewrite the limit: \[ \lim_{x \to 1} \frac{x - 1}{(x - 1)(x^2 + x + 1)(\sqrt{x+3} + 2)} \] We can cancel \( x - 1 \) from the numerator and denominator: \[ \lim_{x \to 1} \frac{1}{(x^2 + x + 1)(\sqrt{x+3} + 2)} \] 5. **Substituting \( x = 1 \) again**: Now we can substitute \( x = 1 \): \[ = \frac{1}{(1^2 + 1 + 1)(\sqrt{1+3} + 2)} = \frac{1}{(1 + 1 + 1)(2 + 2)} = \frac{1}{3 \cdot 4} = \frac{1}{12} \] 6. **Conclusion**: Since the limit exists and is equal to \( f(1) \), we have: \[ f(1) = \frac{1}{12} \] ### Final Answer: Thus, \( f(1) \) is \( \frac{1}{12} \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Competitive Thinking|63 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0 , is continuous at x = 0, then f(0) is

If f(x) (2^(x)-1)/(1-3^(x)) , x != 0 is continuous at x = 0 then : f(0) =

If f(x)=x^((1)/(x-1)) for x!=1 and f is continuous at x=1 then f(1)

If function f(x) = (sqrt(1+x) - root(3)(1+x))/(x) is continuous function at x = 0, then f(0) is equal to

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

f(x) = {:((sqrt(x+3)-2)/(x^(3)-1)", if " x!=1),(=1/12", if " x=1):}} at x = 1 , si

The function f(x)=((3^(x)-1)^(2))/(sin x*ln(1+x)),x!=0, is continuous at x=0, Then the value of f(0) is

Find the value of f(1) that the function f(x)= (9(x^(2/3)-2x^(1/3)+1))/((x-1)^(2)), x ne 1 is continuous at x =1

f(x)=sqrt(log((3x-x^(2))/(x-1)))

TARGET PUBLICATION-CONTINUITY-Critical Thinking
  1. Let f(x)={(5^(1//x)"," , x lt 0),(lambda[x]",",x ge0):} and lambda in...

    Text Solution

    |

  2. If f(x) = (x-a)/(sqrt(x)-sqrt(a)), x != a, is continuous at x = a then...

    Text Solution

    |

  3. If f(x) = (sqrt(x+3)-2)/(x^(3)-1) , x != 1, is continuous at x = 1, th...

    Text Solution

    |

  4. If f(x)={((sqrt(1+kx)-sqrt(1-kx))/(x),",","for" -1 lex lt 0),(2x^(2)+3...

    Text Solution

    |

  5. If f(x) = {:((x^(4)-64x)/(sqrt(x^(2)+9)-5),",",x != 4),(k,",",x =4):} ...

    Text Solution

    |

  6. If f(x) = (tan(x^(2)-x))/(x), x != 0, is continuous at x = 0, then f(0...

    Text Solution

    |

  7. Function f(x) = (1-cos 4x)//(8x^(2)), " where " x != 0 , and f(x) = k...

    Text Solution

    |

  8. Let f(x) = {((1-cos 4x)/(x^(2))",",x lt 0),(a",",x = 0),((sqrt(x))/(sq...

    Text Solution

    |

  9. {:(f(x),=(1-cos 3x)/(x tan x),",","for" x != 0),(,=k, ",","for" x = 0)...

    Text Solution

    |

  10. For what value of k, function f(x)={((k cosx)/(pi-2x)",","if "x ne (pi...

    Text Solution

    |

  11. If {:(f(x),=(cos x - sin x)/(cos 2x),",", x != (pi)/4),(,=k, ",", x = ...

    Text Solution

    |

  12. f:R->R is defined by f(x)={(cos3x-cosx)/(x^2), x!=0lambda, x=0 and f ...

    Text Solution

    |

  13. If f(x) is continuous at x=pi/4, where f(x)=(1-tanx)/(1-sqrt(2)sin x),...

    Text Solution

    |

  14. If f(x) ={((3sinx-sqrt(3)cosx)/(6x-pi),",",x != (pi)/6),(a, ",",x = pi...

    Text Solution

    |

  15. If f(x)=(1-sinx)/((pi-2x)^2),w h e nx!=pi/2a n df(pi/2)=lambda, the f(...

    Text Solution

    |

  16. If f(x) = ((a+x)^(2)sin(a+x)-a^(2)sin a)/(x) , x !=0, then the value o...

    Text Solution

    |

  17. If the function f(x)=(2-sqrt(x+4))/(sin2x)(x ne 0) is continuous at x ...

    Text Solution

    |

  18. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  19. If f(x) is continuous at x=pi/2, where f(x)=(sqrt(2)-sqrt(1+sin x))/(...

    Text Solution

    |

  20. If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0, is continuous at x = 0...

    Text Solution

    |