Home
Class 12
MATHS
If the function f(x) = (cos^(2)x - sin^(...

If the function `f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x != 0`, is continuous at x = 0, then f(0) is equal to

A

-2

B

-1

C

0

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( f(0) \) for the function \[ f(x) = \frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, \quad x \neq 0, \] and ensure that it is continuous at \( x = 0 \), we will follow these steps: ### Step 1: Evaluate the limit as \( x \) approaches 0 We need to find \[ \lim_{x \to 0} f(x). \] Substituting \( x = 0 \) directly into the function gives us: \[ f(0) = \frac{\cos^2(0) - \sin^2(0) - 1}{\sqrt{0^2 + 1} - 1} = \frac{1 - 0 - 1}{1 - 1} = \frac{0}{0}, \] which is an indeterminate form. ### Step 2: Simplify the expression To resolve the \( \frac{0}{0} \) form, we can manipulate the expression. We will multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1} \cdot \frac{\sqrt{x^2 + 1} + 1}{\sqrt{x^2 + 1} + 1}. \] This gives us: \[ = \frac{(\cos^2 x - \sin^2 x - 1)(\sqrt{x^2 + 1} + 1)}{(\sqrt{x^2 + 1})^2 - 1^2}. \] The denominator simplifies to: \[ x^2 + 1 - 1 = x^2. \] So we have: \[ f(x) = \frac{(\cos^2 x - \sin^2 x - 1)(\sqrt{x^2 + 1} + 1)}{x^2}. \] ### Step 3: Simplify the numerator Recall that \[ \cos^2 x - \sin^2 x = \cos(2x), \] thus: \[ \cos^2 x - \sin^2 x - 1 = \cos(2x) - 1 = -2\sin^2(x). \] So, we can rewrite \( f(x) \): \[ f(x) = \frac{-2\sin^2 x (\sqrt{x^2 + 1} + 1)}{x^2}. \] ### Step 4: Evaluate the limit Now we can rewrite \( \sin^2 x \) in terms of \( x \): \[ \sin^2 x = \left(\frac{\sin x}{x}\right)^2 x^2. \] Thus, we have: \[ f(x) = -2 \left(\frac{\sin x}{x}\right)^2 (\sqrt{x^2 + 1} + 1). \] Taking the limit as \( x \to 0 \): \[ \lim_{x \to 0} f(x) = -2 \cdot 1 \cdot (1 + 1) = -2 \cdot 2 = -4. \] ### Conclusion Since \( f(x) \) is continuous at \( x = 0 \), we find that: \[ f(0) = \lim_{x \to 0} f(x) = -4. \] Thus, the value of \( f(0) \) is \[ \boxed{-4}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Competitive Thinking|63 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

If f9x),={(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1)x,!=0,x=0, is continuous at x=0, find k

if f(x)=(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1),x!=0 and f(x)=k,x=0 is continuous at x=0 then k=

If quad f(x)={(cos^(2)x-s in^(2)x-1)/(sqrt(x^(2)+1)-1),quad x!=0k,quad x=0 is continuous at x=0, find k

If f(x) = sin x - cos x , x != 0 , is continuous at x = 0, then f(0) is equal to

If f(x) (2^(x)-1)/(1-3^(x)) , x != 0 is continuous at x = 0 then : f(0) =

If f(x) f(x) = (log{(1+x)^(1+x)}-x)/(x^(2)), x != 0 , is continuous at x = 0 , then : f(0) =

If f(x) = (1+sin x - cos x)/(1- sin x - cos x ) , x != 0 is continuous at x = 0 , then : f(0) =

Let f(x)=(e^(x)x cos x-x log_(e)(1+x)-x)/(x^(2)),x!=0 If f(x) is continuous at x=0, then f(0) is equal to

If the function f(x) {((1 - cos 4x)/(8x^(2))",",x !=0),(" k,",x = 0):} is continuous at x = 0 then k = ?

If f(x) =(1+sin x - cos x)/(1-sin x - cos x ), x != 0 , is continuous at x = 0 , then f(0) = ………

TARGET PUBLICATION-CONTINUITY-Critical Thinking
  1. If f(x) is continuous at x=pi/2, where f(x)=(sqrt(2)-sqrt(1+sin x))/(...

    Text Solution

    |

  2. If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0, is continuous at x = 0...

    Text Solution

    |

  3. If the function f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x !=...

    Text Solution

    |

  4. The value of f at x =0 so that funcation f(x) = (2^(x) -2^(-x))/x , ...

    Text Solution

    |

  5. If f(x)=(3^(x)+3^(-x)-2)/(x^(2)) for x ne 0 is continuous at x = 0, i...

    Text Solution

    |

  6. If f(x) is continuous at x = 0, where {:(f(x),=(8^(x)-2^(x))/(k^(x)-1)...

    Text Solution

    |

  7. If f(x) is continuous at x=0, where f(x)=((e^(3x)-1)sin x^(@))/(x^(2))...

    Text Solution

    |

  8. If {:(f(x),=(e^(5x)-e^(2x))/(sin 3x),",",x != 0),(,=k/2, ",",x = 0):} ...

    Text Solution

    |

  9. If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0...

    Text Solution

    |

  10. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  11. If {:(f(x),=((4x+1)/(1-4x))^(1/x),",",x != 0),(,=k, ",",x = 0):} is...

    Text Solution

    |

  12. If {:(f(x),=(sec^2x)^(cot^2x),",",x != 0),(,=k, ",",x = 0):} is con...

    Text Solution

    |

  13. If f(x) is continuous at x = (pi)/2, where f(x) = (sinx)^(1/(pi-2x)), ...

    Text Solution

    |

  14. {:(f(x),=(log(1+kx))/(sin x),",",x != 0),(,=5, ",",x = 0):} If f is...

    Text Solution

    |

  15. If {:(f(x),=(logx-log7)/(x-7),",",x != 7),(,=k, ",",x = 7):} is con...

    Text Solution

    |

  16. If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",...

    Text Solution

    |

  17. {:(f(x),=((3^(sin x)-1)^(2))/(xlog(1+x)),",",x != 0),(,=k, ",",x = 0):...

    Text Solution

    |

  18. The value of f(0) so that the function f(x) = (log(sec^2 x))/(x sin x)...

    Text Solution

    |

  19. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  20. f(x) ={((x^2-9)/(x-3)+a,",",x gt 3),(5, ",",x = 3),(2x^2+3x+b, ",",x l...

    Text Solution

    |