Home
Class 12
MATHS
If f(x) ={((5^(x)-e^(x))/(sin 2x),",",x ...

If `f(x) ={((5^(x)-e^(x))/(sin 2x),",",x != 0),(1/2(log 5+1),",",x = 0):}` , then

A

f(x) is continuous at `x = 0`

B

f(x) is discontinuous at `x = 0`

C

`lim_(x to 0)f(x)` does not exist

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the function \( f(x) \) is continuous at \( x = 0 \), we need to check if the following condition holds: \[ \lim_{x \to 0} f(x) = f(0) \] ### Step 1: Identify the function values The function is defined as: \[ f(x) = \begin{cases} \frac{5^x - e^x}{\sin(2x)} & \text{if } x \neq 0 \\ \frac{1}{2}(\log 5 + 1) & \text{if } x = 0 \end{cases} \] ### Step 2: Calculate \( f(0) \) From the definition, we have: \[ f(0) = \frac{1}{2}(\log 5 + 1) \] ### Step 3: Calculate the limit as \( x \) approaches 0 We need to find: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{5^x - e^x}{\sin(2x)} \] ### Step 4: Substitute \( x = 0 \) into the limit Substituting \( x = 0 \) directly gives: \[ \frac{5^0 - e^0}{\sin(2 \cdot 0)} = \frac{1 - 1}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 5: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of the numerator \( 5^x - e^x \) is \( 5^x \ln(5) - e^x \). - The derivative of the denominator \( \sin(2x) \) is \( 2 \cos(2x) \). Thus, we have: \[ \lim_{x \to 0} \frac{5^x \ln(5) - e^x}{2 \cos(2x)} \] ### Step 6: Substitute \( x = 0 \) again Now substituting \( x = 0 \): \[ \frac{5^0 \ln(5) - e^0}{2 \cos(0)} = \frac{1 \cdot \ln(5) - 1}{2 \cdot 1} = \frac{\ln(5) - 1}{2} \] ### Step 7: Compare the limit with \( f(0) \) Now we compare: \[ \lim_{x \to 0} f(x) = \frac{\ln(5) - 1}{2} \] with \[ f(0) = \frac{1}{2}(\log 5 + 1) \] ### Step 8: Check for equality We need to check if: \[ \frac{\ln(5) - 1}{2} = \frac{1}{2}(\log 5 + 1) \] Multiplying both sides by 2 gives: \[ \ln(5) - 1 = \log 5 + 1 \] This simplifies to: \[ \ln(5) - \log(5) = 2 \] Since \( \ln(5) \) and \( \log(5) \) are equal, this statement is false. ### Conclusion Since the limit does not equal \( f(0) \), the function \( f(x) \) is discontinuous at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Competitive Thinking|63 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

f(x) {:((e^(5x)-e^(3x))/(sin2x)", if "x!=0),(=1", if "x=0):}} at x = 0 is ,

If f(x) is continuous at x=0 , where f(x)={:{((log (1+kx))/(sin x)", for " x!=0),(5", for " x=0):} , then k=

{:(f(x),=(log(1+kx))/(sin x),",",x != 0),(,=5, ",",x = 0):} If f is continuous at x = 0, then k =

If f(x) {:( =((2^(x)-1)^(2))/(sin x.log(1+x))", if " x != 0 ),(= 2 log 2", if " x = 0 " ) :} then , at x = 0 the function f is

If f(x) {:(=(log (1-2x)-log(1-3x))/x", " x != 0 ),(=a", " x = 0 ):} is continuous at x = 0 , then : a =

Let f : R rarr R be defined as f(x) = {{:((x^(3))/((1-cos 2x)^(2)) log_(e)((1+2x e^(-2x))/((1-x e^(-x))^(2))),",",x ne 0),(alpha,",", x =0):} . If f is continuous at x = 0, then alpha is equal to :

If f(x)=((8^(x)-1)^(2))/(sin x log (1+ x/4)) in [-1, 1] - {0} , then for removable discontinuity of f at x=0, f(0)=

f(x)={(log(1+2ax)-log(1-bx))/(x),x!=0x=0

If f(x) {:(=(log (1+3x )-log(1-2x))/x", if " x != 0 ),(=a", if " x =0 ):} is continuous at x = 0 , then a =

TARGET PUBLICATION-CONTINUITY-Critical Thinking
  1. If f(x) ={(4-3x,",",0 lt x le 2),(2x-6,",",2 lt x le 3),(x+5,",",3 lt ...

    Text Solution

    |

  2. If f(x)={:{(x sin x", for " 0 lt x le pi/2),(pi/2 sin (pi+x)", for " p...

    Text Solution

    |

  3. If f(y)={(((e^(2y)-1)*siny)/(y^(2)),", for "y ne 0),(4,", for "y=0):}...

    Text Solution

    |

  4. For the function f(x)={((sin^(2)ax)/(x^(2))",","where " x ne 0),(1",",...

    Text Solution

    |

  5. The points of discontinuity of tan x are

    Text Solution

    |

  6. If f(x)={:{((sin 2x)/(sqrt(1-cos 2x))", for " 0 lt x lt pi/2),((cos x)...

    Text Solution

    |

  7. If {:(f(x),=(x cos x - 3tan x)/(x^(2)+2sinx),",",x != 0),(,=1, ",",x =...

    Text Solution

    |

  8. If f(x) ={((5^(x)-e^(x))/(sin 2x),",",x != 0),(1/2(log 5+1),",",x = 0)...

    Text Solution

    |

  9. f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(p...

    Text Solution

    |

  10. If f(x) {:( =((2^(x)-1)^(2))/(sin x.log(1+x))", if " x != 0 ),(= ...

    Text Solution

    |

  11. If f(x) = (tan(pi/4-x))/(cot2x), x != pi/4, is continuous in (0, pi/2)...

    Text Solution

    |

  12. If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2...

    Text Solution

    |

  13. The function f(x) = (x^(2)-4)/(sin x-2) is

    Text Solution

    |

  14. If f(x) is continuous on [0, 8] , where f(x)={:{(x^(2)+ax+6", for " 0...

    Text Solution

    |

  15. If f(x) is continuous in [-2,2], where f(x) = {((sinax)/(x)-2,",","f...

    Text Solution

    |

  16. The value of a and b such that the function defined by f(x) = {(7,",...

    Text Solution

    |

  17. If f(x)=(e^(x)+e^(-x)-2)/(x sin x), for x in [(-pi)/(2), (pi)/(2)]-{0}...

    Text Solution

    |

  18. Discuss the continuity of f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)),x!=1,2 6,x=...

    Text Solution

    |

  19. The values of a and b so that the function f(x) = {{:(x + a sqrt(2) si...

    Text Solution

    |

  20. If the function f(x) = {(1+(sin)(pi x)/2,",","for"-oo lt x le 1),(ax+b...

    Text Solution

    |