Home
Class 12
MATHS
If f(x) = {(1, ",", "when" 0 lt x le (3p...

If `f(x) = {(1, ",", "when" 0 lt x le (3pi)/4),(2(sin) 2/9x, ",", "when" (3pi)/4 lt x lt pi):}`, then

A

f(x) is continuous at x = 0

B

f(x) is continuous at `x = pi`

C

f(x) is continuous at `x = (3pi)/4`

D

f(x) is discontinuous at `x = (3pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Critical Thinking|80 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

If : f(x) {:(=1", ... "0 ltx le (3pi)/4), (= 2 .sin ((2x)/9) ", ..." (3pi)/4lt x lt pi):} then :

If f(x)={:{(x sin x", for " 0 lt x le pi/2),(pi/2 sin (pi+x)", for " pi/2 lt x lt pi):} , then

Let f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(pi)/2 lt x lt (pi)/2 ),(cos x, ",", "if" x ge (pi)/2 ):} Then

Find the local maxima and local minima of the functions: (i) f(x) = sin 2x, " when " 0 lt x lt pi (ii) f(x) = (sin 2x -x), " when " - (pi)/(2) le x le (pi)/(2)

If f(x) is continuous over [-pi, pi] , where f(x) is defined as f(x) = {(-2sin x, ",",-pi le x le (-pi)/2),(alpha sin x + beta, ",", -(pi)/2 lt x lt (pi)/2 ),(cos x, ",", (pi)/2 le x lt pi ):} then alpha and beta equals

Let f (x) = {{:((1+sin x )",", when, 0 le x lt (pi)/(2)), (" " 1",", when, x lt 0 ):} Show that f ' (0) does not exist.

If f(x)={:{((sin 2x)/(sqrt(1-cos 2x))", for " 0 lt x lt pi/2),((cos x)/(pi-2x)", for " pi/2 lt x lt pi):} , then

Find the local maxima and local minima of the functions: (i) f(x) = (sin x - cos x), " When " 0 lt x lt (pi)/(2) (ii) f(x) = (2 cos x + x), " when " 0 lt x lt pi

If f(x)={(-x^2",",when xle0),(5x-4",","when "0 lt x le 1),(4x^2-3x",","when "1 lt x lt 2),(3x+4",",when xge2):} ,then

TARGET PUBLICATION-CONTINUITY-Competitive Thinking
  1. If f(x) = |x-2|, then

    Text Solution

    |

  2. If f(x) = |x-b|, then the function

    Text Solution

    |

  3. If f(x) = {(1, ",", "when" 0 lt x le (3pi)/4),(2(sin) 2/9x, ",", "when...

    Text Solution

    |

  4. If f(x) = {((1-cosx)/x, ",", x != 0),(k, ",", x = 0):} is continuous a...

    Text Solution

    |

  5. If the function f(x) = {((cosx)^(1/x), ",", x != 1),(k, ",", x = 1):} ...

    Text Solution

    |

  6. If f(x) = {((log(e )x)/(x-1), ",", x != 1),(k, ",", x = 1):} is contin...

    Text Solution

    |

  7. The function f(x) = (1-sin x + cos x)/(1+sin x + cosx) is not defined ...

    Text Solution

    |

  8. If {:(f(x),=((e^(kx)-1)^(2)sinx)/(x^(3)),",",x != 0),(,=4, ",",x = 0):...

    Text Solution

    |

  9. If f(x) = (e^(x^2)-cos x)/(x^(2)), "for" x != 0 is continuous at x = 0...

    Text Solution

    |

  10. For what value of k, the function defined by {:(f(x),=(log(1+2x)sinx^(...

    Text Solution

    |

  11. If {:(f(x),=log(1-3x)(1+3x),",",x != 0),(,=k, ",",x = 0):} is contin...

    Text Solution

    |

  12. If {:(f(x),=(log)(sec^2x)^(cot^2x),",","for"x != 0),(,=k, ",","for"x =...

    Text Solution

    |

  13. If the function {:(f(x),=[log((pi)/4+x)]^(1/x),",","for"x != 0),(,=k, ...

    Text Solution

    |

  14. Function f(x) = {((log(2)2x)^(log(x)8), ",", x != 1),((k-1)^(3), ",", ...

    Text Solution

    |

  15. For the function f(x) = (log(e )(1+x)-log(e )(1-x))/(x) to be continuo...

    Text Solution

    |

  16. The function f(x) = (log(1+ax)-log(1-bx))/(x) is not defined at x = 0....

    Text Solution

    |

  17. If the function f(x) = {((x^(2)-(A+2)x+A)/(x-2), ",", x != 2),(2, ",",...

    Text Solution

    |

  18. The value of k which makes f(x) = {((sin(1/x)), ",", x != 0),(k, ","...

    Text Solution

    |

  19. If the function f(x) defined by {:(f(x),=x (sin)1/x,",","for"x != 0)...

    Text Solution

    |

  20. If f(x) = {(ax^(2)-b, ",", "when" 0 le x le 1),(2, ",","when"x = 1),(x...

    Text Solution

    |