Home
Class 12
MATHS
If f(x) = (log(e)(1+x^(2)tanx))/(sinx^(3...

If `f(x) = (log_(e)(1+x^(2)tanx))/(sinx^(3)), x != 0` is continuous at x = 0 then f(0) must be defined as

A

1

B

0

C

`1/2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( f(0) \) such that the function \( f(x) = \frac{\log_e(1 + x^2 \tan x)}{\sin^3 x} \) is continuous at \( x = 0 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Identify the limit**: We need to find \( \lim_{x \to 0} f(x) \). \[ f(x) = \frac{\log_e(1 + x^2 \tan x)}{\sin^3 x} \] 2. **Substitute \( x = 0 \)**: Direct substitution gives us an indeterminate form \( \frac{0}{0} \) because: - \( \tan(0) = 0 \) implies \( \log_e(1 + 0) = 0 \) - \( \sin(0) = 0 \) implies \( \sin^3(0) = 0 \) 3. **Apply L'Hôpital's Rule**: Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. 4. **Differentiate the numerator and denominator**: - **Numerator**: Differentiate \( \log_e(1 + x^2 \tan x) \): \[ \frac{d}{dx} \log_e(1 + x^2 \tan x) = \frac{1}{1 + x^2 \tan x} \cdot \left( 2x \tan x + x^2 \sec^2 x \right) \] - **Denominator**: Differentiate \( \sin^3 x \): \[ \frac{d}{dx} \sin^3 x = 3 \sin^2 x \cos x \] 5. **Set up the limit again**: \[ \lim_{x \to 0} \frac{\frac{1}{1 + x^2 \tan x} \cdot (2x \tan x + x^2 \sec^2 x)}{3 \sin^2 x \cos x} \] 6. **Evaluate the limit**: As \( x \to 0 \): - \( \tan x \approx x \) and \( \sec^2 x \approx 1 \) - Therefore, \( 2x \tan x \approx 2x^2 \) and \( x^2 \sec^2 x \approx x^2 \) - The numerator approaches \( \frac{1}{1 + 0} \cdot (2x^2 + x^2) = 3x^2 \) - The denominator approaches \( 3 \cdot 0^2 \cdot 1 = 0 \) Thus, we have: \[ \lim_{x \to 0} \frac{3x^2}{3 \sin^2 x \cos x} \] 7. **Simplify further**: Since \( \sin x \approx x \) as \( x \to 0 \): \[ \sin^2 x \approx x^2 \] Therefore, the limit simplifies to: \[ \lim_{x \to 0} \frac{3x^2}{3x^2 \cdot 1} = 1 \] 8. **Conclusion**: For \( f(x) \) to be continuous at \( x = 0 \), we define \( f(0) \) as: \[ f(0) = 1 \] ### Final Answer: Thus, \( f(0) \) must be defined as \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Critical Thinking|80 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

If f(x) is continuous at x=0, then f(0) is defined as where

If f(x) f(x) = (log{(1+x)^(1+x)}-x)/(x^(2)), x != 0 , is continuous at x = 0 , then : f(0) =

If f(x) (2^(x)-1)/(1-3^(x)) , x != 0 is continuous at x = 0 then : f(0) =

If f(x) = (2x+ tanx)/(x) , x!=0 , is continuous at x = 0, then f(0) equals

If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0 , is continuous at x = 0, then f(0) is

TARGET PUBLICATION-CONTINUITY-Competitive Thinking
  1. if f(x)=sin[x]/([x]+1) , x > 0 and f(x)=(cospi/2[x])/([x]) , x < 0 and...

    Text Solution

    |

  2. The function defined by f(x) = {((x^(2)+e^(1/(2-x)))^(2), ",",x != 2...

    Text Solution

    |

  3. If f(x) = (log(e)(1+x^(2)tanx))/(sinx^(3)), x != 0 is continuous at x ...

    Text Solution

    |

  4. The function f: R-{0} -> R given by f(x)=1/x-2/[e^2x-1] can be made co...

    Text Solution

    |

  5. If {:(f(x),=(20^x + 3^x - 6^x- 10^x)/(1-cos 8x),",","for"x != 0),(,=(k...

    Text Solution

    |

  6. If f(x) = {((x-2)/(|x-2|)+a, ",",x lt2),(a+b, ",", x = 2 ),((x-2)/(|x-...

    Text Solution

    |

  7. If f(x) = |x|+|x-1|, then

    Text Solution

    |

  8. If f(x) = {((x^(2)-4x+3)/(x^(2)-1), ",","for"x != 1),(2, ",", "for"x =...

    Text Solution

    |

  9. If f(x) = {((|x-a|)/(x-a), ",","when"x != a),(1, ",", "when"x = a ):} ...

    Text Solution

    |

  10. The function f(x) = |x| = (|x|)/x is

    Text Solution

    |

  11. The points of discontinuity of the function f(x)=(2x^(2)+7)/(x^(3)+3x...

    Text Solution

    |

  12. If f: R to R is defined by f(x) = {(x-1, ",","for"x le 1),(2-x^(2),...

    Text Solution

    |

  13. The number of points at which the function f(x) = 1/(log|x|) is discon...

    Text Solution

    |

  14. The number of discontinuities of the greatest interger function f(x) =...

    Text Solution

    |

  15. If the function f(x) = {(5x-4, ",","if"0 lt x le 1),(4x^(2)+3bx, ","...

    Text Solution

    |

  16. Let f(x) = {((x^(3)+x^(2)-16x+20)/((x-2)^(2)), ",","if" x != 2),(k, ",...

    Text Solution

    |

  17. The function f(x) = Sin(x)/[[x]] , where [x] the greatest function at ...

    Text Solution

    |

  18. The function f(x) = sin{x} is where {.} is fractional part function

    Text Solution

    |

  19. Let f(x) = (1-tanx)/(4x-pi), x != (pi)/4, x in [0,(pi)/2]. If f(x) is ...

    Text Solution

    |

  20. If the function f9x)=(2x-sin^(-1)x)/(2x+tan^(-1)x) is continuous at ea...

    Text Solution

    |