Home
Class 12
MATHS
Let f(x) = {(-2sin x, ",","if" x le -(pi...

Let `f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(pi)/2 lt x lt (pi)/2 ),(cos x, ",", "if" x ge (pi)/2 ):}`
Then

A

f(x) is discontinuous for all A and B

B

f(x) is continuous for A = -1 and B = 1

C

f(x) is continuous for A = 1 and B = -1

D

f(x) is continuous for all real values of A, B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at the points where the piecewise function changes, specifically at \( x = -\frac{\pi}{2} \) and \( x = \frac{\pi}{2} \). ### Step 1: Check continuity at \( x = -\frac{\pi}{2} \) We need to find the left-hand limit and the right-hand limit at \( x = -\frac{\pi}{2} \). 1. **Left-hand limit** as \( x \to -\frac{\pi}{2}^- \): \[ f(x) = -2 \sin x \] \[ \lim_{x \to -\frac{\pi}{2}^-} f(x) = -2 \sin\left(-\frac{\pi}{2}\right) = -2 \cdot (-1) = 2 \] 2. **Right-hand limit** as \( x \to -\frac{\pi}{2}^+ \): \[ f(x) = A \sin x + B \] \[ \lim_{x \to -\frac{\pi}{2}^+} f(x) = A \sin\left(-\frac{\pi}{2}\right) + B = A \cdot (-1) + B = -A + B \] For continuity at \( x = -\frac{\pi}{2} \): \[ \lim_{x \to -\frac{\pi}{2}^-} f(x) = \lim_{x \to -\frac{\pi}{2}^+} f(x) \] \[ 2 = -A + B \quad \text{(Equation 1)} \] ### Step 2: Check continuity at \( x = \frac{\pi}{2} \) Next, we check the limits at \( x = \frac{\pi}{2} \). 1. **Left-hand limit** as \( x \to \frac{\pi}{2}^- \): \[ f(x) = A \sin x + B \] \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = A \sin\left(\frac{\pi}{2}\right) + B = A \cdot 1 + B = A + B \] 2. **Right-hand limit** as \( x \to \frac{\pi}{2}^+ \): \[ f(x) = \cos x \] \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = \cos\left(\frac{\pi}{2}\right) = 0 \] For continuity at \( x = \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) \] \[ A + B = 0 \quad \text{(Equation 2)} \] ### Step 3: Solve the system of equations Now we have two equations: 1. \( -A + B = 2 \) (Equation 1) 2. \( A + B = 0 \) (Equation 2) From Equation 2, we can express \( B \) in terms of \( A \): \[ B = -A \] Substituting \( B \) into Equation 1: \[ -A + (-A) = 2 \] \[ -2A = 2 \implies A = -1 \] Now substituting \( A = -1 \) back into Equation 2: \[ -1 + B = 0 \implies B = 1 \] ### Conclusion The values of \( A \) and \( B \) are: \[ A = -1, \quad B = 1 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Critical Thinking|80 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous over [-pi, pi] , where f(x) is defined as f(x) = {(-2sin x, ",",-pi le x le (-pi)/2),(alpha sin x + beta, ",", -(pi)/2 lt x lt (pi)/2 ),(cos x, ",", (pi)/2 le x lt pi ):} then alpha and beta equals

If f:R to R given by f(x)={(2cosx"," , "if", x le -(pi)/(2)),(a sin x+b",","if", -(pi)/(2) lt x lt (pi)/(2)),(1+cos^(2)x",","if",x ge(pi)/(2)):} is a continuous function on R, then (a, b) is equal to

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

The value of a and b such that the function f(x)={(-2sinx"," , -pi le x le -(pi)/(2)),(a sinx+b",", -(pi)/(2) lt x lt (pi)/(2)),(cosx",", (pi)/(2) le x le pi ):} is continuous in [-pi,pi] are

The value of a and b such that the function f(x) {:{(-2 sin x", "-pile x le -pi/2 ),(a sin x+b " ," -pi/2 lt x lt pi/2 ),(cos x", " pi/2 le x le pi ):} is continuous in [ - pi , pi ] are

If f(x) = {(1, ",", "when" 0 lt x le (3pi)/4),(2(sin) 2/9x, ",", "when" (3pi)/4 lt x lt pi):} , then

If f(x)={:{(x sin x", for " 0 lt x le pi/2),(pi/2 sin (pi+x)", for " pi/2 lt x lt pi):} , then

TARGET PUBLICATION-CONTINUITY-Competitive Thinking
  1. If f(x) = {((|x-a|)/(x-a), ",","when"x != a),(1, ",", "when"x = a ):} ...

    Text Solution

    |

  2. The function f(x) = |x| = (|x|)/x is

    Text Solution

    |

  3. The points of discontinuity of the function f(x)=(2x^(2)+7)/(x^(3)+3x...

    Text Solution

    |

  4. If f: R to R is defined by f(x) = {(x-1, ",","for"x le 1),(2-x^(2),...

    Text Solution

    |

  5. The number of points at which the function f(x) = 1/(log|x|) is discon...

    Text Solution

    |

  6. The number of discontinuities of the greatest interger function f(x) =...

    Text Solution

    |

  7. If the function f(x) = {(5x-4, ",","if"0 lt x le 1),(4x^(2)+3bx, ","...

    Text Solution

    |

  8. Let f(x) = {((x^(3)+x^(2)-16x+20)/((x-2)^(2)), ",","if" x != 2),(k, ",...

    Text Solution

    |

  9. The function f(x) = Sin(x)/[[x]] , where [x] the greatest function at ...

    Text Solution

    |

  10. The function f(x) = sin{x} is where {.} is fractional part function

    Text Solution

    |

  11. Let f(x) = (1-tanx)/(4x-pi), x != (pi)/4, x in [0,(pi)/2]. If f(x) is ...

    Text Solution

    |

  12. If the function f9x)=(2x-sin^(-1)x)/(2x+tan^(-1)x) is continuous at ea...

    Text Solution

    |

  13. The function f(x) = {(x+2, ",",1 le x lt 2),(4, ",", x = 2 ),(3x-2, "...

    Text Solution

    |

  14. The value(s) of x for which the function f(x) = {(1-x, ",", x lt 1),...

    Text Solution

    |

  15. If f(x) is continuous over [-pi, pi], where f(x) is defined as f(x) ...

    Text Solution

    |

  16. Let f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(...

    Text Solution

    |

  17. The value of p and q for which the function f(x) = {((sin(p+1)x+sinx...

    Text Solution

    |

  18. Q. For every integer n, let an and bn be real numbers. Let function f:...

    Text Solution

    |

  19. Let a function f: R to R, where R is the set of real nos. satisfying t...

    Text Solution

    |

  20. The value of f(0) so that the function f(x) = (sqrt(1+x)-(1+x)^(1/3)...

    Text Solution

    |