Home
Class 12
MATHS
lim(x->0)(sin^3(sqrtx)log(1+3x))/((tan^-...

`lim_(x->0)(sin^3(sqrtx)log(1+3x))/((tan^-1 sqrtx)^2(e^(5sqrtx)-1)x)=`

A

a = 0

B

`a = 3/5`

C

`a = 2`

D

`a = 5/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Competitive Thinking|63 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin^(3)(sqrt(x))log(1+3x))/((tan^(-1)sqrt(x))^(2)(e^(5sqrt(x))-1)x)=

e^(tan^(-1)sqrtx)

The velue of lim_(x rarr0)(sin(3sqrt(x))ln(1+3x))/((tan^(-1)sqrt(x))^(2)(e^(5(3sqrt(x)))-1)) is equal to

(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrt(x)+cos^(-1)sqrtx)

lim_(x-> a) (sqrtx +sqrta)/(x+a)

int (sin^-1sqrtx-cos^-1 sqrtx)/(sin^-1 sqrtx+ cos^-1 sqrtx)

The value of (lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1) is

lim_(xrarr0^(+)) (1)/(xsqrtx)(a tan^(-1).(sqrtx)/(a)-btan^(-1).(sqrtx)/(b)) has the value equal to

lim_(x rarr0)(sqrt(1+sin3x)-1)/(log(1+tan2x))