Home
Class 12
MATHS
If 1/sqrt(2) le x le 1 and sin^(-1)(2xsq...

If `1/sqrt(2) le x le 1` and `sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x`, then (A,B)=

A

`(pi,2)`

B

(0,2)

C

`(pi,-2)`

D

(0,-2)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the equation given: \[ \sin^{-1}(2x\sqrt{1-x^2}) = A + B\sin^{-1}(x) \] where \( \frac{1}{\sqrt{2}} \leq x \leq 1 \). ### Step 1: Use the double angle formula for sine We know that: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] If we let \( \theta = \sin^{-1}(x) \), then we have: \[ \sin(2\theta) = 2x\sqrt{1-x^2} \] Thus, we can rewrite the left side of our equation: \[ \sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}(x) \] ### Step 2: Determine the range of \( x \) Given that \( \frac{1}{\sqrt{2}} \leq x \leq 1 \), we need to consider the implications for \( 2\sin^{-1}(x) \): - When \( x = \frac{1}{\sqrt{2}} \), \( \sin^{-1}(x) = \frac{\pi}{4} \), thus \( 2\sin^{-1}(x) = \frac{\pi}{2} \). - When \( x = 1 \), \( \sin^{-1}(x) = \frac{\pi}{2} \), thus \( 2\sin^{-1}(x) = \pi \). ### Step 3: Relate the expressions Now, we can equate: \[ \sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}(x) \] to the form: \[ A + B\sin^{-1}(x) \] From this, we can see that: \[ A + B\sin^{-1}(x) = 2\sin^{-1}(x) \] ### Step 4: Identify coefficients \( A \) and \( B \) From the equation \( A + B\sin^{-1}(x) = 2\sin^{-1}(x) \), we can identify: - \( B = 2 \) - \( A = 0 \) ### Step 5: Conclusion Thus, we conclude that the values of \( A \) and \( B \) are: \[ (A, B) = (0, 2) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

sin^(-1)(xsqrt(x)),0 le x le 1

If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

If -1/2 le x le 1/2 hence sin^(-1)(3x-4x^(3)) equals

If 1/2 le x le 1 then sin^(-1)3x-4x^(3) equals

If 1/2 le x le 1 then sin^(-1) (3x-4x^(3)) equals

If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0 then x belongs to the interval

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1