Home
Class 12
MATHS
lf bara,barb,barc are coplanar unit vect...

lf `bara,barb,barc` are coplanar unit vectors, then
`[2bara-barb,2barb-barc,2barc-bara]=`

A

0

B

1

C

`sqrt(3)`

D

`-sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Three dimensional Geometry|1 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Line|1 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Pair of Straight Lines|2 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MODEL QUESTION PAPER-I

    TARGET PUBLICATION|Exercise MCQs|48 Videos

Similar Questions

Explore conceptually related problems

[[bara-barb, barb-bara, barc-bara]]=

If bara,barb,barc are any three coplanar unit vectors then

If bara,barb,barc are three coplanar vectors, then [bara+barb" "barb+barc" "barc+bara]=

If bara,barb,barc be any three non-coplanar vectors, then [bara+barb" "barb+barc" "barc+bara]=

If bara, barb,barc are non-coplanar vectors, then (bara+barb+barc).(bara+barb)xx(bara+barc)=

If bara,barb,barc are non-coplaner vectors, then (bara.(barbxxbarc))/(barb.(barcxxbara))+(barb.(baraxxbarc))/(barc.(baraxxbarb))=

If vectors bara,barb,barc are non-coplaner, then ( [ bara+2barb barb+2barc barc+2bara ] )//( [ bara barb barc ] ) =

If bara,barb,barc are three vectors, then [bara,barb,barc] is not equal to

If bara,barb,barc are non-coplaner vectors and barp=(barbxxbarc)/([barb barcbara]),barq=(barcxxbara)/([barcbarabarb]),barr=(baraxxbarb)/([barabarb barc]), then : (barb+barc).barp+(barc+bara).barq+(bara+barb).barr=