Home
Class 12
MATHS
If f(x) is continuous at x=a, where f(x)...

If f(x) is continuous at x=a, where `f(x) = (sqrt(x)-sqrt(a) + sqrt(x-a))/sqrt(x^(2) -a^(2))`, for `x ne a`, then f(a)=

A

`1/sqrt(2a)`

B

`1/(2sqrt(a))`

C

`1/(2a)`

D

`2sqrt(a)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Differentiation|3 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Application of Derivatives|3 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Linear Programming|1 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MODEL QUESTION PAPER-I

    TARGET PUBLICATION|Exercise MCQs|48 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=2a , where f(x)=(sqrt(x)-sqrt(2a)+sqrt(x-2a))/(sqrt(x^(2)-4a^(2))) , for x!=2a , then f(2a)=

If f(x) is continuous at x=sqrt(2) , where f(x)=(sqrt(3+2x)-(sqrt(2)+1))/(x^(2)-2) , for x!= sqrt(2) , then f(sqrt(2))=

f(x) = sqrt(x-2).sqrt(x-3)

If f(x) is continuous at x=5 , where f(x)=(sqrt(3+sqrt(4+x))-sqrt(6))/(x-5) , for x!=5 , then f(5)=

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f (x) is continuous at x=pi, where f(x) =(sqrt(2+cos x)-1)/((pi-2)^(2)), "for" x ne pi, find f(pi).

if f(x)=sqrt(x+sqrt(x+)sqrt(x+)sqrt(…oo)),

If f(x) is continuous at x=0 , where f(x)=(sqrt(1+x)-root3(1+x))/(x) , for x!=0 , then f(0)=

If f(x) is continuous at x = pi , where f(x)=(sqrt(2+cos x)-1)/((pi-x)^(2))", for " x!= pi , then f(pi)=

If f(x)=x(sqrt(x)-sqrt(x+1)) then f(x) is: