Home
Class 12
MATHS
If x=t log t ,y =t^(t) ,then (dy)/(dx)=...

If ` x=t log t ,y =t^(t) ,then (dy)/(dx)=`

A

`e^(t)`

B

1 + log t

C

`e^(t)/(1+log t)`

D

`e^(x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Application of Derivatives|3 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Integration|3 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Continuity|2 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MODEL QUESTION PAPER-I

    TARGET PUBLICATION|Exercise MCQs|48 Videos

Similar Questions

Explore conceptually related problems

If x = 4t ,y =(4)/(t) ,then (dy)/(dx)=

If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

If x= sin (log t ),y =log (sin t ) ,then (dy)/(dx)=

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

x=e^(t)log t y=t log t then dy/dx

If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

If x=at,y=(a)/(t)," then "(dy)/(dx)=

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=

1.If x=5t-t^(3) ,y=t^(2)+4t find (dy)/(dx) at t=1 .