Home
Class 12
MATHS
If int x^(2) e^(3x) dx = e^(3x)/27 f(x) ...

If `int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c`, then f(x)=

A

`9x^(2) + 6x +2`

B

`9x^(2) - 6x +2`

C

`9x^(2) + 6x +2`

D

`9x^(2) - 6x -2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 e^{3x} \, dx \) and find \( f(x) \) in the equation \( \int x^2 e^{3x} \, dx = \frac{e^{3x}}{27} f(x) + C \), we can use integration by parts. ### Step-by-Step Solution: 1. **Identify Functions for Integration by Parts**: Let: - \( u = x^2 \) (which we will differentiate) - \( dv = e^{3x} \, dx \) (which we will integrate) 2. **Differentiate and Integrate**: - Differentiate \( u \): \[ du = 2x \, dx \] - Integrate \( dv \): \[ v = \int e^{3x} \, dx = \frac{e^{3x}}{3} \] 3. **Apply Integration by Parts Formula**: The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ \int x^2 e^{3x} \, dx = x^2 \cdot \frac{e^{3x}}{3} - \int \frac{e^{3x}}{3} \cdot 2x \, dx \] This simplifies to: \[ = \frac{x^2 e^{3x}}{3} - \frac{2}{3} \int x e^{3x} \, dx \] 4. **Integrate \( \int x e^{3x} \, dx \) Again by Parts**: For \( \int x e^{3x} \, dx \), let: - \( u = x \) - \( dv = e^{3x} \, dx \) Then: - \( du = dx \) - \( v = \frac{e^{3x}}{3} \) Applying integration by parts again: \[ \int x e^{3x} \, dx = x \cdot \frac{e^{3x}}{3} - \int \frac{e^{3x}}{3} \, dx \] This simplifies to: \[ = \frac{x e^{3x}}{3} - \frac{1}{9} e^{3x} \] 5. **Substituting Back**: Now substitute back into the equation: \[ \int x^2 e^{3x} \, dx = \frac{x^2 e^{3x}}{3} - \frac{2}{3} \left( \frac{x e^{3x}}{3} - \frac{1}{9} e^{3x} \right) \] Simplifying this: \[ = \frac{x^2 e^{3x}}{3} - \frac{2x e^{3x}}{9} + \frac{2 e^{3x}}{27} \] 6. **Combine Terms**: To combine terms, factor out \( e^{3x} \): \[ = e^{3x} \left( \frac{x^2}{3} - \frac{2x}{9} + \frac{2}{27} \right) \] Finding a common denominator (27): \[ = e^{3x} \left( \frac{9x^2 - 6x + 2}{27} \right) \] 7. **Final Form**: Thus, we have: \[ \int x^2 e^{3x} \, dx = \frac{e^{3x}}{27} (9x^2 - 6x + 2) + C \] 8. **Identify \( f(x) \)**: From the equation \( \int x^2 e^{3x} \, dx = \frac{e^{3x}}{27} f(x) + C \), we can see that: \[ f(x) = 9x^2 - 6x + 2 \] ### Final Answer: \[ f(x) = 9x^2 - 6x + 2 \]
Promotional Banner

Topper's Solved these Questions

  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Definite integrals|2 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Applications of Definite Integral|1 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Application of Derivatives|3 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MODEL QUESTION PAPER-I

    TARGET PUBLICATION|Exercise MCQs|48 Videos

Similar Questions

Explore conceptually related problems

If intx^(3).e^(-x)dx=-e^(-x).f(x)+c, then f(x)=

For int (x -1)/( (x +1 ) ^(3)) e ^(x) dx = e ^(x) f (x) + c , f (x) =(x +1) ^(2).

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If inte^(ax)cosbx dx=(e2x)/(29)f(x)+C , then f'' (x)=

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If int (e ^(x) (1+ sin x )dx)/( 1+ cos x ) = e ^(x) f (x) + C, then f (x) is equal to

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(sin x + cos x)dx =

If int x f (x) dx = (f (x))/( 2) then f (x) = e ^(x ^(2))

int e^x (x^3+3x^2) dx