Home
Class 11
PHYSICS
The sine of the angle between 3hat(i)+ha...

The sine of the angle between `3hat(i)+hat(j)+2hat(k)and 2hat(i)-2hat(j)+4hat(k)` is

A

1

B

0.91

C

0.76

D

0.67

Text Solution

AI Generated Solution

The correct Answer is:
To find the sine of the angle between the vectors \( \mathbf{A} = 3\hat{i} + \hat{j} + 2\hat{k} \) and \( \mathbf{B} = 2\hat{i} - 2\hat{j} + 4\hat{k} \), we can follow these steps: ### Step 1: Calculate the dot product of the two vectors The dot product \( \mathbf{A} \cdot \mathbf{B} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = (3)(2) + (1)(-2) + (2)(4) \] Calculating this gives: \[ \mathbf{A} \cdot \mathbf{B} = 6 - 2 + 8 = 12 \] ### Step 2: Calculate the magnitudes of the vectors The magnitude of vector \( \mathbf{A} \) is: \[ |\mathbf{A}| = \sqrt{3^2 + 1^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14} \] The magnitude of vector \( \mathbf{B} \) is: \[ |\mathbf{B}| = \sqrt{2^2 + (-2)^2 + 4^2} = \sqrt{4 + 4 + 16} = \sqrt{24} \] ### Step 3: Use the dot product to find cos(θ) From the dot product formula: \[ \mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta \] We can rearrange this to find \( \cos \theta \): \[ \cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} = \frac{12}{\sqrt{14} \cdot \sqrt{24}} \] ### Step 4: Simplify the expression for cos(θ) Calculating \( \sqrt{14} \cdot \sqrt{24} \): \[ \sqrt{14 \cdot 24} = \sqrt{336} \] Thus, \[ \cos \theta = \frac{12}{\sqrt{336}} = \frac{12}{\sqrt{16 \cdot 21}} = \frac{12}{4\sqrt{21}} = \frac{3}{\sqrt{21}} \] ### Step 5: Find sin(θ) using the identity sin²(θ) + cos²(θ) = 1 We know: \[ \sin^2 \theta = 1 - \cos^2 \theta \] Calculating \( \cos^2 \theta \): \[ \cos^2 \theta = \left(\frac{3}{\sqrt{21}}\right)^2 = \frac{9}{21} = \frac{3}{7} \] Now substituting into the identity: \[ \sin^2 \theta = 1 - \frac{3}{7} = \frac{4}{7} \] Thus, \[ \sin \theta = \sqrt{\frac{4}{7}} = \frac{2}{\sqrt{7}} \] ### Step 6: Final answer The sine of the angle between the two vectors is: \[ \sin \theta = \frac{2}{\sqrt{7}} \approx 0.7559 \]
Promotional Banner

Topper's Solved these Questions

  • SCALARS AND VECTORS

    TARGET PUBLICATION|Exercise Competitive Thinking|64 Videos
  • SCALARS AND VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|19 Videos
  • SCALARS AND VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|19 Videos
  • REFRACTION OF LIGHT

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k) .

The angle between two vectors -2hat(i)+3hat(j)+hat(k) and 2hat(i)+2hat(j)-4hat(k) is

What is the sine of angle between the vectors hat(i)+2hat(j)+3hat(k) and -hat(i)+2hat(j)+3 hat(k) ?

What is the sine of the angle between the vectors hat(i) + 2hat(j) + 3hat(k) and -hat(i) +2hat(j) + 3hat(k) ?

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

The angle between the line r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k)) and the plane r*(2hat(i)-hat(j)+hat(k))=4 is

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

Find he cosine of the angle between the vectors 4hat i-3hat j+3hat k and 2hat i-hat j-hat k

Express -hat(i)-3hat(j)+4hat(k) as the linear combination of the vectors 2hat(i)+hat(j)-4hat(k) , 2hat(i)-hat(j)+3hat(k) and 3hat(i)+hat(j)-2hat(k) .

Find the angle between the vectors hat i-2hat j+3k and 3hat i-2hat j+k

TARGET PUBLICATION-SCALARS AND VECTORS-Critical Thinking
  1. A Unit vector in the direction of the negative of the vector (-hat(i)+...

    Text Solution

    |

  2. If vec(A)=2hat(i)+6hat(j)and vec(B)=4hat(i)+3hat(j), the vector having...

    Text Solution

    |

  3. If the sum of two unit vectors is a unit vector, then magnitude of dif...

    Text Solution

    |

  4. A vector of magnitude b is rotated through angle theta. What is the ch...

    Text Solution

    |

  5. The resultant of two vectors vec(P) and vec(Q) is vec(R ). If the magn...

    Text Solution

    |

  6. A force vector applied on a mass is represented as vec(F)=6hat(i)-8hat...

    Text Solution

    |

  7. Vector vec(A)=2hat(i)-3hat(j)+ahat(k)andvec(B)=12hat(i)-bhat(j)+6hat(k...

    Text Solution

    |

  8. If a 4hat(i)+3hat(j)+8hat(k) is perpendicular to the vector 4hat(j)-4h...

    Text Solution

    |

  9. A force vec(F)=3hat(i)+chat(j) +2hat(k) acting on a particle causes a ...

    Text Solution

    |

  10. Work done when a force of (7hat(i)-4hat(j)-4hat(k)) N moves a body thr...

    Text Solution

    |

  11. If vec(P)=hat(i)-2hat(j)-3hat(k)and vec(Q)=4hat(i)-2hat(j)+6hat(k) , t...

    Text Solution

    |

  12. Choose the CORRECT statement.

    Text Solution

    |

  13. The sine of the angle between 3hat(i)+hat(j)+2hat(k)and 2hat(i)-2hat(j...

    Text Solution

    |

  14. If vec(A).vec(B)=0andvec(A)xxvec(B)=0, then which of the following con...

    Text Solution

    |

  15. If the ratio of the dot product of two vectors and cross product of sa...

    Text Solution

    |

  16. Select the WRONG one.

    Text Solution

    |

  17. If vec(a) and vec(b) are two vectors then the value of (vec(a) + vec(b...

    Text Solution

    |

  18. Given vec(p)*(vec(P)+vec(Q))=P^(2) then the angle between vec(P)andvec...

    Text Solution

    |

  19. Assertion : If dot product and cross product of vec(A)andvec(B) are ze...

    Text Solution

    |

  20. Assertion : vec(A)xxvec(B) is perpendicular to both vec(A)+vec(B) as w...

    Text Solution

    |