Home
Class 11
PHYSICS
What is the value of linear velocity. If...

What is the value of linear velocity. If `vec(omega)=3hat(i)-4hat(j)+hat(k)and vec(r)=5hat(i)-6hat(j)+6hat(k)` ?

A

`6hat(i)-2hat(j)+3hat(k)`

B

`6hat(i)-2hat(j)+8hat(k)`

C

`6hat(i)-13hat(j)+6hat(k)`

D

`18hat(i)+13hat(j)-2hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the linear velocity \( \vec{v} \) given the angular velocity \( \vec{\omega} \) and the position vector \( \vec{r} \), we use the formula: \[ \vec{v} = \vec{\omega} \times \vec{r} \] ### Step 1: Write down the vectors Given: - \( \vec{\omega} = 3\hat{i} - 4\hat{j} + \hat{k} \) - \( \vec{r} = 5\hat{i} - 6\hat{j} + 6\hat{k} \) ### Step 2: Set up the cross product To compute the cross product \( \vec{\omega} \times \vec{r} \), we can set it up in a determinant form: \[ \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & 1 \\ 5 & -6 & 6 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula, we can expand it as follows: \[ \vec{v} = \hat{i} \begin{vmatrix} -4 & 1 \\ -6 & 6 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ 5 & 6 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix} \] ### Step 4: Calculate each of the 2x2 determinants 1. For \( \hat{i} \): \[ \begin{vmatrix} -4 & 1 \\ -6 & 6 \end{vmatrix} = (-4)(6) - (1)(-6) = -24 + 6 = -18 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 3 & 1 \\ 5 & 6 \end{vmatrix} = (3)(6) - (1)(5) = 18 - 5 = 13 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix} = (3)(-6) - (-4)(5) = -18 + 20 = 2 \] ### Step 5: Combine the results Now substituting back into the expression for \( \vec{v} \): \[ \vec{v} = -18\hat{i} - 13\hat{j} + 2\hat{k} \] ### Step 6: Final result Thus, the linear velocity \( \vec{v} \) is: \[ \vec{v} = 18\hat{i} + 13\hat{j} - 2\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • SCALARS AND VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|19 Videos
  • SCALARS AND VECTORS

    TARGET PUBLICATION|Exercise Critical Thinking|36 Videos
  • REFRACTION OF LIGHT

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

What is the value of linear velocity, if vec(omega) = 3hat(i)-4 hat(j) + hat(k) and vec(r) = 5hat(i)-6hat(j)+6hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on vec(b)=2hat(i)+6hat(j)+3hat(k)

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

For what value of 'lambda' are the following vectors coplanar ? vec(a)=2hat(i)-4hat(j)+5hat(k), vec(b)=hat(i)-lambda hat(j)+hat(k) and vec(c )= 3hat(i)+2hat(j)-5hat(k) .

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

For a body, angular velocity (vec(omega)) = hat(i) - 2hat(j) + 3hat(k) and radius vector (vec(r )) = hat(i) + hat(j) + vec(k) , then its velocity is :

TARGET PUBLICATION-SCALARS AND VECTORS-Competitive Thinking
  1. A vector vec(A) points verically upward and vec(B) points towards nort...

    Text Solution

    |

  2. Which of the following relation is not correct?

    Text Solution

    |

  3. What is the value of linear velocity. If vec(omega)=3hat(i)-4hat(j)+ha...

    Text Solution

    |

  4. If vec(A)xxvec(B)=vec(B)xxvec(A), then the angle between vec(A) and ve...

    Text Solution

    |

  5. The moment of the force, vec(A)xxvec(B)=vec(B)xxvec(A), at (2,0,-3), a...

    Text Solution

    |

  6. A force vec F = prop hat i + 3 hat j + 6 hat k is acting at a point ve...

    Text Solution

    |

  7. The velocity of a particle of mass m is vec(v) = 5 hat(i) + 4 hat(j) +...

    Text Solution

    |

  8. Two adjacent sides of a parallelogram are respectively by the two vect...

    Text Solution

    |

  9. Three vector vec(A),vec(B), vec(C ) satisfy the relation vec(A)*vec(B)...

    Text Solution

    |

  10. The component of a vector r along X-axis will have maximum value if

    Text Solution

    |

  11. If |vecA xx vecB| = sqrt3 vecA *vecB, then the value of |vecA + vecB| ...

    Text Solution

    |

  12. Sum of magitude of two fores is 25 N. The resultant of these forces is...

    Text Solution

    |

  13. Consider a particle on which constant forces vec(F) = hat(i) + 2hat(j)...

    Text Solution

    |

  14. A particle moves from a point (-2hat(i) + 5hat(j)) " to" " " (4hat(j) ...

    Text Solution

    |

  15. A force F=-K(yhati+xhatj) (where K is a positive constant) acts on a p...

    Text Solution

    |

  16. The vector sum of two forces is perpendicular to their vector differen...

    Text Solution

    |

  17. Which of the following statement is true?

    Text Solution

    |

  18. If vec(a) and vec(b) are two vectors then the value of (vec(a) + vec(b...

    Text Solution

    |

  19. The angle between the vector vec(A) and vec(B) is theta. Find the valu...

    Text Solution

    |

  20. The vector vec(A),vec(B) and vec( C ) are such that |vec(A)|=|vec(B)|...

    Text Solution

    |